CronologiIC

Ndigo6G-12
User Guide

Ndigo6G-12

www.cronologic.de

Contents

Introduction 4
Features . . . e 5
Board OVerview e 5

1 Hardware 7
1.1 Installation . . . oo e 7
1.2 CooliNg . . o o 7
1.3 External Inputsand ConNectors i e 8

1.3.1 Frontbracket inputs e 8
1.3.2 Clock connections e 8
1.3.3 Analog INpuULS . . . o e 9
Analog Offsets e 9
AC-Coupling and Baseline Drift e 10
1.3.4 Digital TDC INPULS . . . o o e e e 10
1.3.5 Digital Control Inputs e 11
Use Control Inputs as TDCS o i e e e e e e e e e 11

2 Functionality 12

2.1 ADCMOAES . . ot e e e 12
2.1.1 1-ChannelModes Aand D e 12
2.1.2 2-ChannelMode AD e 13
2.1.3 4-ChannelMode ABCD e 13
2.1.4 Multiple Sampling Modes e 13

Modes AAand DD 14
Mode AADD 14
Modes AAAA, DDDD e e 15

2.2 ZEro SUPPIESSION . o v i i e e e e e 15

2.3 Trigger SetUp o o e 16
2.3.1 Triggerconfiguration 16

Analog INPULS o e 1o
Digital INputs o e 19
2.3.2 TriggerinpuULs e 19
2.3.3 Gating trigger events 20

2.4 Gating BloCKs e 20

2.4.1 EXamples . .. e 22
Example 1: Suppression of Noise After Starting an Acquisition 22
2.4.2 Example 2: Delayed Trigger o 0 e 23

2.5 Auto Triggering Function Generator. ot e 23

2.6 Averaging Mode e 24

2.7 Timing Generator (TIGEr) 0 e e e e e e e e 24

2.8 Performing afirmware update 24
2.8.1 Procedure e 25

2.9 Calibratingthe TDC e e 26
2.9.1 Re-calibratingthe Ndigo6G-12 e 26

3 Driver Programming API 27
3.1 Constants 27

3.1.1 General .. e 27

2 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

3.1.2 Triggerand Gating Block Sources e 28

3.1.3 Functionreturnvalues 29
3.1.4 PCleInformation e 30

3.2 Initialization e 31
ndigo6gl2_get_default_init_parameters 32
NAIgo6gI2_iNit e 32
Ndigo6gl2_cClose e e 33
NAigo6gl12_deviCe e 33
Ndigo6gl12_INit_pPAramMeEters v i it e e e 33

3.3 Statusinformation e 36
Ndigo6gl12_get_driver_revision i e e 36

ndigo6gl2_get _driver_revision_str e e 36
Ndigo6gl12_COUNT_AEVICES i i i e e e e e e e e e e 36
Ndigo6gl12_get_statiC_infOo i i e e e 36
Nndigo6gl2_get_pardm_info e e 36
ndigo6gl2_get_fast_info e 36
Nndigo6gl2_get_pcie_INfO e 37
Ndigo6gl2_pardm_infO e e e 37
Ndigo6gl2_static_info e 38
Ndigo6gl12_fast_info e 40
Ndigo6gl12_pcie_infO e 45

3.4 Configuration e e 46
ndigo6gl2_get_default_configuration i e 46
NAdigo6gl12_CoNfiQUIe e e e e 48
Ndigo6gl12_configuration i e e 48
NAIgo6gI2_trigger i e e 53
ndigo6gl2_trigger_block e 54
ndigo6gl2_gating_block e 56
Nndigo6gl12_tdc_configuration i e e e 57
ndigo6gl2_averager_configuration i e e 58
ndigo6gl2_tdc_channel e 59
ndigo6gl2_tdc_gating_block e 59
ndigo6gl2_tdc_tiger_bloCK e 60

3.5 RUuNtime control o e e e 62
Ndigo6g 12 _Start_CAPTUIre v v i e e e e e e e e e e e e e e 62
Ndigo6g12_StOP_CAPLUIE v i i e e e e e e e e 62
Ndigo6gl12_manual_trigger e e 62
ndigo6gl2_single_shot e 62

Ndigo6g 12 _CleQr_pCie_errors o v i e e e e e e e e 63

3.6 ReadoULlo 63
NAigo6gl12_read e e 63
Ndigo6gl12_get_last_error_MesSSAgEe v v v v v it e e e e 63
ndigo6gl2_device state tOo_Str e e 63

NAIgo6gI12 read_iN e e e e 64
NAdigo6gl12_read_OUt e e 64

Packet Format 66
4.1 Output Structure crono_packet e 66
4.2 Uity Macros e 68
4.3 Dataencoding for ADC hits e 69
4.3.1 NDIGO6G12_QOUTPUT_MODE_SIGNED16 i 69
4.3.2 NDIGO6G12 OUTPUT _MODE RAW oo e e e e e 69

4.3.3 NDIGO6G12_OUTPUT _MODE RAW NO CB e e e 69

4.3.4 NDIGO6G12 _OUTPUT _MODE _SIGNED32 e 69

4.4 Dataencoding for TDC hits. o o e e e e e e e e 69

4.5 Dataencodingforaveraged ADChits. e 71

5 C++-Example 72

51 ndigo6gl2_example.CPP o oo vt 72

52 ndigo6gl2_app.h 78

53 ndigo6gl2_adc_single.CPPt 82

54 ndigo6gl2_adc_dual.Cpp oo 83

55 ndigo6gl2_adc_quad.Cpp . . .« o i 84

5.6 ndigo6gl2_adc_averager.CPPttt 86

57 ndigo6gl2_ tdC.CPp . . . o oo 88

58 delay.h 90

6 Technical Data 95

6.1 Digitizer CharacteristiCs v i e e e 95

6.1.1 1-Channel-Mode (6.4 GSPS) . . . v v i v it e e e e e e e e 95

6.1.2 2-Channel-Mode (3.2 GSPS) . . . o v v i it e e e e e e e 95

6.1.3 4-Channel-Mode (1.6 GSPS) v v i it e e e e e e e e 96

6.2 Oscillator Time Base 96

6.3 Electrical CharacteristiCs i e 96

6.3.1 Environmental Conditions for Operation 96

6.3.2 Environmental ConditionsforStorage e 97

6.3.3 POWeEr SUPPIY . . o o e 97

6.3.4 Analog INPULS 97

6.3.5 Digital InpuUts e 97

6.3.6 Absolute Maximum RatingsS e 98

Analog INPULS o e 98

Digital INputs e 98

6.4 Information Required by DIN EN 61010-1 e 98

6.4.1 Manufacturer e 98

6.4.2 Intended Use and System Integration e 99

6.4.3 Environmental Conditions e 99

B.4.4 INPULS e e e e e 99

6.4.5 RecyCling e 99
6.4.6 Export Control e 100

7 Revision History 101
7.1 FIrMWAIE . o o ot o e e e e e e e e e e e e e e e 101
7.2 DIVEE o e e 101
7.3 User GUIde . . . o o 102

8 Erratum 104

4 cronologic CmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

5

Infroduction

The Ndigo6G-12 offers 6400 Msps sample rate, 12 bit resolution and a greatly improved readout rate of
up to 5200 MB/s.

The unit is a combined ADC/TDC board for the acquisition of pulses in time-of-flight applications. It builds
on the established platform of the Ndigo5G-10 but takes it to the next level both in performance and
flexibility.

The Ndigo6G-12 was specifically designed for time-of-flight applications like LIDAR or TOF mass spec-
trometry. A measurement precision of 5 ps (RMS) is achievable for unipolar pulses. In addition, informa-
tion on the pulse shape, such as area or amplitude, is recorded.

Four channels with 1600 Msps at 12 bit resolution can be acquired independently. Alternatively, the four
channels can be combined into two channels or into a single channel. This way, either a higher temporal
resolution up to 6400 Msps or a larger dynamic range can be achieved via multiple-sampling modes.

This User Guide documents the hardware and functionality of the Ndigo6G-12 board, as well as the driver
programming API provided by the Ndigo6G-12 driver.

This User Guide is also available online at docs.cronologic.de/ndigo6g.

Features

- 12 bit dynamic range

- Up to 6400 Msps sample rate (in 1-channel mode) for increased resolution in time domain.
- Up to four ADC channels for your individual measurement setups.

- Four TDC channels with a resolution of 13 ps.

- Two digital control inputs for effective gating and triggering.

- PCle3 x8 interface for simple and fast data transfer to most PCs.

- Unlimited multihit capabilities.

- Common start and common stop capabilities.

- Continuous ADC readout rate of approx. 5200 MB/s.

- Zero suppression, significantly reducing PCle load.

- Internal 10 MHz clock with a time base of 10 ppb or the ability to use an external 10 MHz clock.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de/product/ndigo6g-12
https://www.cronologic.de/product/ndigo5g-10
https://www.cronologic.de/applications/lidar
https://www.cronologic.de/applications/tof-mass-spectrometry
https://www.cronologic.de/applications/tof-mass-spectrometry
https://docs.cronologic.de/ndigo6g
https://www.cronologic.de

Optimized for

ADC channels

TDC channels

Digital control channels
Connectors

Sample rate

Resolution

Maximum bandwidth

TDC bin size

TDC double pulse resolution
Multihit

Dead time between groups

Readout rate

Timestamp range

Readout interface

Time base

On-board calibration data storage
Adjustable trigger windows
Possibility for overlapping events
Easy-to-use Windows C-API

In-system firmware updates

TOF applications
4
4
2

10 x LEMO 00

6400 Msps (1-Channel Mode)
3200 Msps (2-Channel Mode)
1600 Msps (4-Channel Mode)

12 bit

TBD

13 ps
typically 5 ns
unlimited

none

5200 MByte/s (ADC)
30 MHits/s (all TDC channels)
11.6 MHits/s (single TDC channel)

106 d

PCle3 x8

10 ppb (internal) or external 10 MHz clock

yes

yes

yes

yes

yes

cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

1 Hardware

1.1 Installation

The Ndigo6G-12 board can be installed in any PCle x8 (or higher amount of lanes) PCle slot. If the slot
electrically supports less than eight lanes, the board will operate at lower data throughput rates.

Connect a 6-pin PCle power cable to the connector at the rear of the board (see Figure 1.1).

6 Note

The Ndigo6G-12 does not operate without a 6-pin PCle power connector.

Clk in Clk out diff Clk out PCle Power

Reserved . Reserved

(HERECAC RE RENCRERE RC K

Figure 1.1: Overview of an Ndigo6G-12 board. Note the PCle power con-
nector at the rear of the board.

1.2 Cooling

The Ndigo6G-12 board is equipped with an active cooling system, ensuring proper cooling of the device.
If, however, the temperature of the ADC chip exceeds 90 °C (for instance, if the device is operated in
inappropriate environmental conditions, see Section 6.3.1), a warning is issued to the device driver. When
the temperature exceeds 95 °C, the ADC chip is disabled to avoid damaging the device.

7 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

1.3 External Inputs and Connectors

1.3.1 Front bracket inputs
The inputs of the Ndigo6G-12 board are located on the slot bracket.

Figure 1.2 shows the location of the four analog inputs A to D (see Section 1.3.3), the four digital TDC
inputs O to 3 (see Section 1.3.4), and the two digital control inputs TRG and GATE (see Section 1.3.5).

Figure 1.2: Input connectors of an Ndigo6G-12 board located on the PCI
bracket.

1.3.2 Clock connections
Connectors to connect an external clock or to access the internal clock signal are located at the top of the
board (see Figure 1.1).

Clk in (SMA)
Connect your external 10 MHz clock signal here. Make sure to set ndigo6gl2 init_parame-

ters::clock_sourceto NDIGO6G12_ CLOCK_SOURCE_SMA.

Clk out (SMA)
10 MHz output. This is either the internal clock signal, or an external clock 10 MHz clock if one is

used.

Clk diff (LEMOO0O0)
Same as Clk out, but as a differential signal and with a LEMOOO connector.

8 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

1.3.3 Anadlog Inputs

Lemo 00 connector

J? TC1-1-I3M+

analog-offset][i]

Figure 1.3: Input circuit for each of the four analog channels.

The analog inputs of the ADC are single ended LEMOOO coax connectors. The inputs havea 50 Q)
impedance and are AC coupled. The inputs are converted to a differential signal using a balun.

Analog Offsets

AC coupling removes the DC voltage offset from the input signal. However, users can shift the DC base-
line voltage before sampling to a value of their choice (using the analog offset parameter).

This feature is useful for highly asymmetric signals, such as pulses from TOF spectrometers or LIDAR
systems. Without analog offset compensation, the pulses would begin in the middle of the ADC range,
effectively cutting the dynamic range in half (see Figure 1.5). By shifting the DC baseline to one end of
the ADC range, the input range can be used fully, providing the maximum dynamic range. The analog
offset can be set between + 0.5 V.

Figure 1.4: Users can add an analog offset to the input before sampling.

Figure 1.5: Asymmetric signal shifted to increase dynamic range.

9 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de/applications/tof-mass-spectrometry
https://www.cronologic.de/applications/lidar
https://www.cronologic.de

AC-Coupling and Baseline Drift

Due to the AC-coupling of the analog and digital inputs, a baseline drift may occur over time (see Fig-

ure 1.6). To avoid this problem, make sure your input signal fulfills the requirements laid out in Sec-
tion 6.3.4.

T [
L— L

Figure 1.6: Baseline drift due to AC-coupling. A second pulse close to a

first may be influenced by a shifted baseline, as sketched in the
lower graph.

1.3.4 Digital TDC Inputs

The Ndigo6G-12 board includes four TDC channels with 13 ps timing resolution. The inputs are AC
coupled (see Figure 1.7).

Lemo 00 connector

) 1
]

+
TEA
L\
>
™
(9p)

DAC

dc_offset[i]

Figure 1.7: Principal input circuit for each of the digital TDC and control
inputs.

The following members of the ndigo6g12_configuration struct configure, respectively, TDC channels
Oto 3:

tdc_trigger_offsets[0:3]
Configure the DC offset.

trigger [NDIGO6G12_TRIGGER_TDCO:NDIGO6G12_TRIGGER_TDC3]
Configure if an edge or level trigger is used (relevant, if the TDCs are used in trigger_blocks or
gating blocks)and if the rising or falling edge of the input signal triggers.
tdc_configuration.channel[0:3]

Configure if (channel [0:3] .enable) and when (channel [0:3] .gating block) timestamps

10 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

are recorded on the TDC channel.

The trigger unit input logic is summarized, as well, in Figure 2.14.

1.3.5 Digital Control Inputs
There are two digital control inputs on the front slot cover called TRG and GATE.

Input-signals on the inputs TRG and GATE are digitized and routed to the Trigger Matrix. They can be
used to trigger any of the trigger state machines and gating blocks with maximum sampling rate.

The digital control inputs are optimally suited to be used as digital triggers and gates, and we recom-
mend using them instead of the digital TDC inputs for these purposes.

TRG and GATE are configured analogously to the TDC inputs (see Section 1.3.4 and Figure 2.14), where
indices 4 (5) and NDIGO6G12_ TRIGGER_TRG (NDIGO6G12_ TRIGGER_GATE) correspond to input TRG
(GATE).

The input circuit and trigger logic is identical to the TDC inputs (see Figures 1.7 and 2.14).

Use Control Inputs as TDCs

The control inputs TRG and GATE can be used as low-resolution TDCs. The dead-time is 5 ns. Pulses
should have a width of at least 300 ps to reliably be detected.

@ Hint

To record timestamps with the TRG or GATE input, set config. tdc_configuration.
channel [4] [5] .enable to true.

0 Note

The digital control inputs TRG and GATE are best suited for triggering and controlling gates.

The digital TDC inputs are best suited for measuring precise time stamps.

11 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

2 Functionality

2.1 ADC Modes

The ADC gquantizes the input signal using 12 bits. By default, these are mapped to signed 16 bit (for more
details, see Section 4.3).

Data processing such as trigger detection or packet building are always performed at 5 ns intervals.
Depending on the ADC mode, this interval may contain 32 (1-Channel Mode @ 6.4 Gsps), 16 (2-Channel
Mode @ 3.2 Gsps) or 8 (4-Channel Mode @ 1.6 Gsps) samples.

The ADC mode is configured using ndigo6gl2 configuration::adc_mode.

The board supports using one, two or four channels. This is configured when the board is initialized, see
ndigo6gl2 init_parameters: :application_type.

During interleaving, the Ndigo6G-12 firmware reorders and groups the data into a linear sample stream.
The process is fully transparent. For users, the only difference is that a 5 ns cycle can contain 8, 16 or 32
samples, depending on the mode.

Depending on the application_type, the minimal length of the output packets changes. The minimal
lengths are:

- 3 x 32 Samples (15 ns) @ 6.4 Gsps (1-Channel Mode)
- 3 x 16 Samples (15 ns) @ 3.2 Gsps (2-Channel Mode)

- 4 x 8 Samples (20 ns) @ 1.6 Gsps (4-Channel Mode)

2.1.1 1-Channel Modes A and D

In these modes, only a single channel is used. The analog signal on that channel is digitized at 6.4 Gsps.
Packet size is always a multiple of 32 samples per 5 ns (See Figures 2.1 and 2.12).

For this mode, ndigo6gl2 static_info::application_type needs to be either
NDIGO6G12_APP_TYPE_1CH or NDIGO6G12_APP_TYPE_AVRG.

900 phase-shifted | 270° phase -shifted
1.6 GHz
CLK —»| Clock ADC A | ADCB 5| ADCC
circuit | 1.6 Gsps 1.6 Gsps 1.6 Gsps

In-phase Inverted

1.6 GHz TT 1.6 GHz AT AT TT

ChannelAor D

Figure 2.1: ADCs in 1-channel-mode A, B, C or D interleaved for 6.4 Gsps.

12 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

2.1.2 2-Channel Mode AD

In this mode, two channels are used simultaneously. The analog signals on these channels are digitized at
3.2 Gsps each. Packet size is always a multiple of 16 samples per 5 ns (See Figures 2.2 and 2.11).

For this mode, ndigo6gl2 static_info::application_type needs to be
NDIGO6G12_APP_TYPE_2CH.

Inverted
1.6 GHz
Clock
CLK T circuit ,| ADCA y| ADCB | aocc [L,| Abco
1.6 Gsps 1.6 Gsps 1.6 Gsps 1.6 Gsps
In-phase
1.6 GHz
A A T T A A T T
Channel A Channel D

Figure 2.2: ADCs in 2-channel-mode AD, interleaved for 3.2 Gsps.

2.1.3 4-Channel Mode ABCD

In this mode, all four channels are digitized independently at 1.6 Gsps each. The packet size is always a
multiple of 16 samples per 10 ns. (See Figures 2.3 and 2.10).

For this mode, ndigo6gl2 static_info::application_type needsto be
NDIGO6G12_APP_TYPE_4CH.

1.6 GHz
ADCA ADC B ADC C ADC D
Clock » >
CLK circuit 1.6 Gsps 1.6 Gsps 1.6 Gsps 1.6 Gsps

—

(I S Y S X,

Channel A Channel B Channel C Channel D

Figure 2.3: ADCs in 4-channel-mode ABCD at 1.6 Gsps.

2.1.4 Multiple Sampling Modes

In these modes, only the specified input channels are used, but the channels are sampled independently
by the ADC cores. The output of the board depends on ndigo6gl2 configuration::sample_averag-—
ing.
- sample_averaging == false: The digitized samples are output as separate packets (the num-
ber of which depends on the selected mode).

13 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

- sample_averaging == true: The average of the digitized samples is calculated and output as
one single packet.

Using the same trigger settings on all ADCs can be used to reduce noise by averaging the four channels.
To deal with complex triggering conditions, different trigger settings on each of the ADCs can be used.

The Ndigo6G-12 provides four ADCs sampling at 1.6 Gsps each. Higher speed modes are implemented
by interleaving two or four of these ADCs.
Modes AA and DD

In this mode, input channel A (or D) is sampled at 3.2 Gsps two times and independently by the internal
ADC cores, see Figure 2.4.

For this mode, ndigo6gl2 static_info::application_type needs to be
NDIGO6G12_APP_TYPE_Z2CH.

Inverted
1.6 GHz
.| Clock
CLKCT Gircuit »| ADCA aocB | L) apcc | L Aabco
In-phase 1.6 Gsps 1.6 Gsps 1.6 Gsps 1.6 Gsps
1.6 GHz

TT 11 11 TT

Channel Aor D
Figure 2.4: ADCs in 2-channel-mode AA or DD at 3.2 Gsps.

Mode AADD

In this mode, input channel A and D are sampled at 1.6 Gsps two times and independently by the
internal ADC cores, see Figure 2.5.

For this mode, ndigo6gl2_ static_info::application_type needsto be
NDIGO6G12_APP_TYPE_4CH.

14 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

1.6 GHz
Clock »| ADCA »| ADCB ADC C »| ADCD
CLK — circuit 1.6 Gsps 1.6 Gsps 1.6 Gsps 1.6 Gsps
A A T T A A T T
Channel A Channel D

Figure 2.5: ADCs in 4-channel-mode AADD at 1.6 Gsps.

Modes AAAA, DDDD

In this mode, input channel A (or D) are sampled at 1.6 Gsps four times and independently by the internal
ADC cores, see Figure 2.6.

For this mode, ndigo6gl2 static_info::application_type needsto be
NDIGO6G12_APP_TYPE_4CH.

1.6 GHz
y»| ADCA »| ADCB ADC C »| ADCD
Clock » > >
CLK circuit 1.6 Gsps 1.6 Gsps 1.6 Gsps 1.6 Gsps

11

TT

']

Channel Aor D

Figure 2.6: ADCs in 4-channel-mode AAAA or DDDD at 1.6 Gsps.

2.2 Zero Suppression

One of the Ndigo6G-12's key features is on-board zero suppression to reduce PCle bus load. Only data
that passes specifications predefined by the user is transmitted. Data is transmitted as so-called “packets.”
For the ADC channels, the packet contains the waveform data and a timestamp giving the absolute time
(i.e., the time since the start of the data acquisition) of the packet’s first sample.

Figure 2.7 shows a simple example: Data is only written to the PC if the sample values exceed a specific
threshold. Expanding on that, the Ndigo6G-12's zero suppression can be used to realize much more
complex scenarios using the Trigger and Gating Blocks (see Sections 2.3 and 2.4).

15 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Retrigger Precursor Postcursor
o N ~

Timestamp

Timestamp

Figure 2.7: Simple zero suppression: Only data with values above a thresh-
old are written to the PC.

2.3 Trigger Setup

The Ndigo6G-12 records analog waveforms using zero suppression. Whenever a relevant waveform is
detected, data is written to an internal FIFO memory.

Each ADC channel has two trigger units. These can be configured independently (e.g., one unit could
trigger on rising edges, the other on falling). They are configured with config. trigger.

Each ADC channel has a corresponding trigger block that determines whether data is written to the
internal FIFOs. The trigger blocks are configured with config. trigger block. Each trigger block can
take any amount of trigger units as a source (for details, see ndigo6gl2 trigger block: :sourcesor
Section 2.3.2), thus, enabling sophisticated trigger setups.

2.3.1 Trigger configuration

Analog Inputs

Users can specify a threshold and can choose whether triggering is used whenever incoming data is
below or above the threshold (level triggering, see Figure 2.8) or only if data exceeds the threshold (edge
triggering, see Figure 2.9).

A gate length can be set to extend the recording window by multiples of 5 ns. Furthermore, a pre-
cursor window can be specified, causing the trigger unit to write data to the FIFO (precursor x 5 ns)
before the trigger event.

When edge triggering is used, all packets have the same length of (precursor + length + 1)-cycles of
5 ns. For level triggering, packet length is data dependent.

If retrigger is enabled and the trigger conditions are fulfilled during the recording of the postcursor,
the recording window is extended (see Figure 2.7).

16 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

total length = 21

z—
A4

I precursor = 6 length = 6
>

——————r————f

A
L)
(@]
e
(/2]
(O]
| S
e
o
Figure 2.8: Example for level triggering.
I total length = 19 |
<€ >
I precursor = 6 length = 12 I
le { >l
| | |
| I — |
| [|
7'y } }
|] |
| — — |
ke, | | — |
o |
e
73} |
o |
|
=
Figure 2.9: Example for edge triggering.
i total length = 4 i
i precursor = 1 length = 2 i
: S ': : il________
| | el
5 T
. e
©
e
(%]
g
S
A
5000 ps

Figure 2.10: Triggering in 4-channel mode at 8 samples per clock cycle.

17 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

4

precursor = 1 length = 2

total length

|
|

threshold

5000 ps

Figure 2.11: Triggering in 2-channel mode at 16 samples per clock cycle.

total length = 4 E
precursor = 1 length = 2 |
«— 3

v

1
L T LT
|

threshold

5000 ps

Figure 2.12: Triggering in 1-channel mode at 32 samples per clock cycle.

18 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Digital Inputs

For all digital inputs, the configuration value ndigo6gl2_ trigger: :threshold isignored. Their trigger
threshold is configured by ndigo6gl12 configuration::tdc_trigger offsets.

Equivalently to the analog inputs, edge- or level-trigger functionality can be enabled using
ndigob6glZ2 trigger: :edge. The duration of a level trigger is solely limited by the AC-coupling (see
Figure 1.6 for the effects of AC-coupling on a signal).

2.3.2 Trigger inputs

A trigger_block can use several input sources:
- The eight trigger decision units of all four ADC channels (Figure 2.13)
- The four TDC and the two digital control inputs (Figure 2.14)

- A function trigger providing random or periodic triggering (see Auto Triggering Function Genera-
tor).

Trigger inputs from the above sources can be concatenated using a logical OR by setting the appropriate
bits in the bitmask (see ndigo6gl2_ trigger block: :sources).

See also Figure 2.15.

Trigger 1

threshold | D

Trigger 2

sample data

threshold | _

Figure 2.13: From the ADC inputs, a trigger unit creates an input flag for
the trigger matrix. Each digitizer channel (A, B, C, D) has two
trigger units.

sample data

threshold | _

Figure 2.14: The digital inputs TDCO, TDC1, TDC2, TDC3, TRG, and CATE
have simpler trigger units.

19 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

o) — — — — >

— > o o o) c O

Py, et O (@) (@) O —HZ

® m o - N w > w @) O om
gallzallze|| e | zellzel (|2 (ze|| 2
QQ ||[@Q||@a || @a] |laQ||aa Qglled|leal|e
Q~F||lQ F||Q = Q —~ |Q ~F||Q = Q —| |Q = «Q = Q =
OV || OV OV OV | DX DY D OoOf|lmO ® O ® O
- - - - - - = Q =Q =Q =Q

w

21z [2l2 3]e 3R

Gates

trigger

K —— —

T ¥ T ¥ T F > > } block[0]
£ 3 X £ 3 X £ 3 X X HK—K trigger* —

block[1]

trigger_
0 * 0 * ¥ "%) } block[2] [
trigger_ |

e e—de—% ® } block[3]

Figure 2.15: Trigger Matrix. The eight trigger signals from the four analog
channels and the trigger signals from the six digital channels
(four TDC channels, TRG, GATE) can be combined to create
a trigger input for each trigger block. Additionally, four gate
signals (see Figure 2.16) can be used to suppress trigger
during configurable time frames.

2.3.3 Gating trigger events
Triggers can be fed into the gating blocks as outlined in Chapter 2.4 and Figure 2.16.

In return, the gating_ blocks can be used to block writing data to the FIFO. That way, only
zero-suppressed data occurring when the selected gate is active is transmitted. This procedure reduces

PCle bus load even further.

Which gating block is used to block a particular trigger block is configured with
ndigo6gl? trigger block: :gates.

2.4 Gating Blocks

In order to decrease the amount of data transmitted to the PC, the Ndigo6G-12 includes four indepen-
dent gate and delay units.

They are configured using ndigo6gl2 configuration::gating block and (specifically for the TDC
channels) ndigo6gl12_tdc_channel: :gating_block.

A gate and delay unit creates a gate window starting and closing at specified times after a trigger event
(as configured by the user with ndigo6gl2 gating block::startand stop).

Concretely, if a trigger event is detected, a timer starts. After the timer reaches the time corresponding to
start, the gate will activate. After the timer reaches the time corresponding to stop, it will inactivate.

This behavior may be influenced by the retrigger feature. With this feature enabled, another trigger
signal will reset the timer to zero. That means, if a second trigger is detected before the gate is activated,

20 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

® 4 4 4 4 >

4 ¥ U g U o c O
A 9 0 00 O O =4 Z
@ m o X N > w O @) om
allallallallallal =
=S =N =N | =N | =N | = R EE R IEE R
HEHEEHEEHE T
=1=ll=ll=[=l|=||® oo o|led O||® ©
= A A A = D | I | B
Qllallallallalla

>romm||OO||T O
SUNCB|BI|G||C||=2||=2|[=e|[=
= = = = = =

Gate state
) machine negate D
retrigger @
Gate state
S O A O G O o § > machine negate D
retrigger 829

Gate state
S O A O G O o A § > machine negate D
retrigger %;9

Gate state
r—t t t t Tt t 1t rt rt tr 171 § > machine negate D
retrigger %gg

Figure 2.16: Gating Blocks: Each gating block can use an arbitrary combi-
nation of inputs to trigger its state machine. The outputs can
be individually inverted and routed to the AND-gate feeding
the trigger blocks.

21 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

22

the time until it activates is extended. If, however, the gate was already active, the time until it inactivates
will be extended.

A Attention

Abug in Firmware Rev. <1.24120 causes the retrigger feature to reset the gate logic entirely (i.e,
the state of the gate will inactivate after a retrigger event).

Depending on ndigo6gl2_gating block: :negate, an active gate will be open (signal detection
enabled) or closed (signal detection disabled).

Each gating block can use an arbitrary combination of inputs which trigger it. This is configured using
ndigo6gl2 gating block::sources.

trigger blocks can use the gate sighal to suppress data acquisition, that is, only data that fulfills zero
suppression specifications occurring in an open gate window is written to the PC.

Figure 2.17 shows the functionality of the gate timing and delay unit.

Gate Trigger / \ / \
Channel Trigger / \ / \ / \ / \

———— Gate Start ————

Gate Stop

Gate closed X open X closed
out '//
Gate Stop

g”,’ Gate closed X open X closed
8l out (PKTYZ
of
g Gate open X closed X open
gl out (PKT X/ PKT
%’ e Gate open X closed X open
2 o
ol 2 out ’//

Figure 2.17: Gate and delay functionality: When a trigger occurs, the gate
opens after a set period of time “Gate Start” and closes when
it reaches “Gate Stop”. A second trigger event may influence
this behavior if retriggering is enabled.

2.4.1 Examples

Example 1: Suppression of Noise After Starting an Acquisition

In mass spectrometer and other experiments, noise while starting data acquisition can result in unde-
sired trigger events during start-up time. To prevent noise in the output data, a gating block could be
used to suppress all triggers during start-up.

The following example illustrates the use of a gating block (in the following, gating block[0])to
prevent recording noise:

- Set up the GATE input to trigger on each acquisition start, that is, trigger [NDIGO6G12_ TRIG-
GER_GATE] is configured corresponding to the input signal (e.g., configuring the polarity).

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

23

- NDIGO6G12_TRIGGER_SOURCE_GATE is selected as input source of gating block[0].source
and the gating block[0].start parameteris set to 0.

- The gating block[0].stop parameter is set to the desired length (in multiples of 5 ns).
- gating block[0] .negateissetto true.

Now, gating block[0] will output a LOW pulse of the desired length (that is, the gate is closed during
start-up time) whenever there is a pulse on the GATE input.

Now, select the above gate for the trigger bock you want to use for triggering data acquisition, e.g.,
trigger_block[0]:

- Set trigger block[0].sourcesedg,

~TRIGGER_SOURCE_DO

config.trigger_block[0].sources = NDIGO6G12_TRIGGER_SOURCE_AO | NDIGO6G12_ }

uses the ADC input channels A and D as sources.

- Set NDIGO6G12_TRIGGER_GATE_O as trigger_block[0].gates.

[config.trigger_block[o] .gates - NDIGO6G12_ TRIGGER_GATE O]

Now, recording of data is suppressed for an initial start-up time.

2.4.2 Example 2: Delayed Trigger

To sample a short window at a specified time after a trigger event on a channel, a gating block can be
used to create a delayed trigger. To do this, one of the triggers of the channel of interest is configured
to the desired parameters by selecting the threshold, setting the edge polarity and enabling edge
triggering.

Instead of directly using this trigger as an input to the trigger block’s input matrix, the trigger is selected
as an input to a gating block. The block is configured with start = delay (in multiples 5 ns) and stop
= start+l,negate = false. This causes the gating block to produce a one clock cycle pulse on its
output after the specified delay.

To send this pulse to the trigger block, the gating block must be enabled in the trigger block's AND
matrix and the ONE trigger source must be selected.

2.5 Auto Triggering Function Generator

Some applications require periodic or random triggering. The Ndigo6G-12's function generator provides
this functionality.

The delay between two trigger pulses of this trigger generator is the sum of two components: A fixed
value M and a pseudo-random value given by the exponent N.

The period is
T=M+[1.2N -1
clock cycles with a duration of 5 ns per cycle, where 6 <M < 232 and 0 < M < 32.

This allows to monitor input signals at times the current trigger configuration does not trigger, e.g., to
get baseline information in mass spectrometry applications. It can also be used to determine a suitable
threshold level for the trigger by first getting random statistics on the input signal.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

This functionality is enabled and configured using ndigo6gl12_configuration: :auto_trigger pe-
riodand auto_trigger_ random_exponent.

2.6 Averaging Mode

Instead of streaming each recorded trigger event as packets, it is possible to average over multiple trigger
events.

By initializing the Ndigo6G-12 board with NDIGO6G12 APP TYPE AVRG, Averaging Mode is enabled.
Then, a number of ndigo6gl2 averager configuration::iterations are averaged before output
is written.

Averaging Mode can be used only with ADC modes A and D (see Section 2.1).

A\ Attention

Be aware that in averaging mode, the first two 64-bit words in data are an extended header. See
Section 4.5 for more information.

2.7 Timing Generator (TiGer)

The LEMO connectors of all TDC channels, the TRG channel, and the GATE channel can be used as an
AC-coupled trigger output. The TiGer functionality can be configured independently for each connector.

Each TiGer is configured using the ndigo6gl12 tdc_tiger block struct. The tiger blocks can be trig-
gered by any combination of inputs, including the auto-trigger and the ADC channels.

o Note

The TiGer configuration is similar to the gating blocks.

The TiGer can be used in different output modes. For an overview of the different modes, see the docu-
mentation in the API section.

With restrictions, the respective LEMO connectors can be used simultaneously as a TiGer output and as
an input.

2.8 Performing a firmware update

The Ndigo6G-12 device driver includes the tool FirmwareGUI_64.exe. It can be used to perform a
firmware update.

The tool is located in your device driver installation path under apps\x64\.

The tool is shown in Figure 2.18.

24 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

| cronologic Flash Tool — 0 W

Card NdigobG-12 23.186 o Device Type: 13 Board Revision: 3 Varant: 2
Cument Application Type: Single Mew Application Type: Single e
Status I
| Cumert Revision: 1.25036 Date: 20250327 13:21:27
Browse...
Flash FlashAll Werify VerfwAll Backup I
Calibration

| Flash Data valid: True Calibration Date: 2025-04-07 15:55 f

| Browse...

Flash Werify Backup Serial

(%)
(&}
=k
[==]
[=F]

Log

Figure 2.18: Firmware flash tool for the NdigocG-12.

2.8.1 Procedure

=

If you have multiple Ndigo6G-12 installed, choose a card in the “Card” dropdown menu.

2. ltis advisable to perform a backup of the current firmware and calibration data. Click the respective
“Backup” button in the tool.

3. Optionally select the application type that you wish to use. This step is not required and can also be
performed when configuring the Ndigo6G-12 in your user software.

4. Browse to the new firmware file: In the “Status” section, click on “Browse". The firmware that is deliv-
ered with the device driver is located at firmware\Ndigo6G_Firmware_ YYYYMMDD.cronorom.

5. Optionally compare the currently installed firmware with the selected firmware by pressing “Verify".

6. Click “Flash” to perform the firmware update.

A Attention

The new firmware will only be used after a complete power cycle. A simple reboot may not be suffi-
cient.

A\ Attention

After a firmware update the TDCs have to be re-calibrated. See Calibrating the TDC for the procedure.

25 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

26

2.9 Calibrating the TDC

You can backup or restore the calibration from a previous backup using FirmwareGUI_64.exe (see
Performing a firmware update and Figure 2.18).

In the “Calibration” section, click “Backup” and choose a location for the .ndigo6gcal calibration file.

You can compare the currently used calibration with the calibration from a backup file by clicking “Verify”
button after browsing to your calibration file.

You can flash the calibration from a *.ndigo6gcal file onto the Ndigo6G-12 by clicking “Flash” after
browsing to your calibration file.

A\ Attention

After performing a firmware update, it is always necessary to re-calibrate your Ndigo6G-12. Restoring
a previous calibration from a backup is not sufficient.

2.9.1 Re-cadlibrating the Ndigo6G-12

Calibration is performed with the commmand-line tool ndigo6g12_tdc_alignment.exe. It is located in
the installation directory of the Ndigo6G-12 driver under apps\x64 (by default C: \Program Files\
cronologic\Ndigo6G-12\apps\x64).

Navigate to the folder and open it in a terminal, then start the tool from that terminal.

The tool takes command line arguments. Run .\ndigo6gl2_tdc_alignment.exe -help foran
overview.

Calibration is performed by simply starting the tool: .\ndigo6gl12_tdc_alignment.exe.

If multiple Ndigo6G-12 are installed in your system, you can perform calibration for each one of them by
calling .\ndigo6gl12_tdc_alignment.exe -index <device_index>, where the <device_index>
starts at O and increments for each Ndigo6G-12.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

3 Driver Programming API

A Attention

The API requires driver versions >2.0.0 and firmware 1.24120.

The APl is a DLL with C linkage. Declarations of the interface are found in ndigo6gl2_interface.h,
provided by the Ndigo6G-12 driver.

This chapter provides an overview of the provided API functionality.

3.1 Constants

3.1.1 General

NDIGO6G12_API_VERSION

The current API version.

NDIGO6G12_TRIGGER_COUNT
The number of ADC and TDC triggers, including AUTO and ONE.

NDIGO6G12_ADC_CHANNEL_COUNT

The number of analog input channels.

NDIGO6G12_GATE_COUNT
The number of gating blocks.

NDIGO6G12_TDC_CHANNEL_COUNT
The number of high (TDCO0-3) and low (TRG, GATE) resolution TDC input channels.

NDIGO6G12_BITSTREAM_DATE_LEN
Bitstream date format: YYYY-MM-DD hh:mm:ss

NDIGO6G12_CALIBRATION_DATE_LEN
Calibration date format: YYYY-MM-DD hh:mm

NDIGO6G12_FLASH_SIG_LEN
Length of Ndigo6G-12 flash signature

NDIGO6G12_FIFO_DEPTH
ADC sample FIFO depth.

It is the maximum recording length in multiples of 5 ns.

27 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

NDIGO6G12_MAX_PRECURSOR

Maximum for ndigo6g12_trigger_block:precursor.

NDIGO6G12_MAX_MULTISHOT

Maximum for ndigo6g12_trigger_block:multi_shot_count.

3.1.2 Trigger and Gating Block Sources

Bitmasks for trigger sources.

Used for ndigo6g12_trigger_block:sources, ndigo6g12_gating_block:sources, ndigo6g12_tdc_gat-
ing_block:sources, and ndigo6g12_tdc_tiger_block:sources.

Defines

NDIGO6G12_TRIGGER_SOURCE_NONE

All trigger sources disabled.

NDIGO6G12_TRIGGER_SOURCE_AO

NDIGO6G12_TRIGGER_SOURCE_A1

NDIGO6G12_TRIGGER_SOURCE_BO

NDIGO6G12_TRIGGER_SOURCE_B1

NDIGO6G12_TRIGGER_SOURCE_CO

NDIGO6G12_TRIGGER_SOURCE_C1

NDIGO6G12_TRIGGER_SOURCE_DO

NDIGO6G12_TRIGGER_SOURCE_D1

NDIGO6G12_TRIGGER_SOURCE_TDCO

NDIGO6G12_TRIGGER_SOURCE_TDC1

NDIGO6G12_TRIGGER_SOURCE_TDC2

NDIGO6G12_TRIGGER_SOURCE_TDC3

28 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

NDIGO6G12_TRIGGER_SOURCE_TRG

NDIGO6G12_TRIGGER_SOURCE_GATE

NDIGO6G12_TRIGGER_SOURCE_AUTO

NDIGO6G12_TRIGGER_SOURCE_ONE

Trigger signal is active each clock cycle.

NDIGO6G12_TRIGGER_SOURCE_FPGAO
Deprecated. Alias for NDIGO6C12_TRICGGER_SOURCE_TRC.

NDIGO6G12_TRIGGER_SOURCE_FPGA1
Deprecated. Alias for NDICO6C12_TRIGGER_SOURCE_CATE.

3.1.3 Function return values

Return codes of various functions

All ERRORS must be positive integers, because the upper byte is used by crono_tools

Defines

CRONO_OK

CRONO_WINDRIVER_NOT_FOUND

CRONO_DEVICE_NOT_FOUND

CRONO_NOT_INITIALIZED

CRONO_WRONG_STATE

CRONO_INVALID_DEVICE

CRONO_BUFFER_ALLOC_FAILED

CRONO_TDC_NO_EDGE_FOUND

CRONO_INVALID_BUFFER_PARAMETERS

CRONO_INVALID_CONFIG_PARAMETERS

29 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

30

3.14

CRONO_WINDOW_CALIBRATION_FAILED

CRONO_HARDWARE_FAILURE

CRONO_INVALID_ADC_MODE

CRONO_SYNCHRONIZATION_FAILED

CRONO_DEVICE_OPEN_FAILED

CRONO_INTERNAL_ERROR

CRONO_CALIBRATION_FAILURE

CRONO_INVALID_ARGUMENTS

CRONO_INSUFFICIENT_DATA

PCle Information

PCle correctable error flags.

Only relevant when troubleshooting.

Defines

CRONO_PCIE_RX_ERROR

CRONO_PCIE_BAD_TLP

CRONO_PCIE_BAD_DLLP

CRONO_PCIE_REPLAY_NUM_ROLLOVER

CRONO_PCIE_REPLAY_TIMER_TIMEOUT

CRONO_PCIE_ADVISORY_NON_FATAL

CRONO_PCIE_CORRECTED_INTERNAL_ERROR

CRONO_PCIE_HEADER_LOG_OVERFLOW

cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

PCle uncorrectable error flags.

Only relevant when troubleshooting.

Defines

CRONO_PCIE_UNC_UNDEFINED

CRONO_PCIE_UNC_DATA_LINK_PROTOCOL_ERROR

CRONO_PCIE_UNC_SURPRISE_DOWN_ ERROR

CRONO_PCIE_UNC_POISONED_TLP

CRONO_PCIE_UNC_FLOW_CONTROL_PROTOCOL_ERROR

CRONO_PCIE_UNC_COMPLETION_TIMEOUT

CRONO_PCIE_UNC_COMPLETER_ABORT

CRONO_PCIE_UNC_UNEXPECTED_COMPLETION

CRONO_PCIE_UNC_RECEIVER_OVERFLOW_ERROR

CRONO_PCIE_UNC_MALFORMED_TLP

CRONO_PCIE_UNC_ECRC_ERROR

CRONO_PCIE_UNC_UNSUPPORED_REQUEST_ERROR

3.2 Initialization

To use a Ndigo6G-12 board, it first needs to be initialized. This is done by calling ndigo6g12_init (). The
initialization parameters necessary for ndigo6g12 init () are provided in the ndigo6gl2_init_pa-
rameters struct.

The general procedure for initialization is as follows:

1. Load a default set of initialization parameters using ndigo6gl2 get_default_init_parame-
ters.

2. If necessary, adjust default parameters to your specific needs.
3. Initialize the Ndigo6G-12 board using ndigo6g12 init ().

4. Check that the initialization was successful. If so, the return value of ndigo6g12_init () is
CRONO_OK.

31 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Information on the current device will be stored as type ndigo6gl2_device.

ndigo6gl2_get_default_init_parameters(init)

Macro that calls ndigo6g12_get_default_init_parameters_version with the correct API version.

intndigo6gl2_get_default_init_parameters_version(ndigo6gl2_init_parameters *init, int
client_api_version)

Sets up the standard parameters.

GCets a set of default parameters for ndigo6g12_init(). This must always be used to initialize the
ndigo6gl12_init_parameters structure.

For convinience, the macro ndigo6g12_get_default_init_parameters is provided, which automati-
cally sets the correct client_api_version.

Default values:
- card_index =0
- board_id =0
- buffer_size[O] = 64 (MiB)
- buffer_size[1-7] = O (unused)
- dma_read_delay = 1000
- perf_derating = 0
- led_flashing_mode = 1
- clock_source = NDIGO6G12_CLOCK_SOURCE_INTERNAL
- application_type = NDIGO6G12_APP_TYPE_CURRENT
- force_bitstream_update = false
- partial_bitstream_size = O
- partial_bitstream = nullptr

- firmware_locations = nullptr

Parameters
- init -[in] Pointer to a structure in which to store the initialization values.
- client_api_version-[in] NDICO6G12_API_VERSION

Returns

See Function return values.

intndigo6gl2_init (ndigo6gl2_device *device, ndigo6g12_init_parameters *params, const char
**error_message)

Open and initialize an Ndigo6G-12 board.

Which Ndigoc6G-12 board will be initialized is determined by ndigo6g12_init_parameters:card_in-
dex.

Parameters
- device - [out] Pointer to the device struct.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

33

- params - [in] Pointer to the structure that contains the initialization parame-
ters.

- error_message — [out] Location in which to store the error message as plain
text.

Returns
See Function return values.

intndigo6gl2_close (ndigo6gl2_device *device)

Finalize the driver for this device.

Parameters
device - [in] Pointer to the device that should be finalized.

Returns
See Function return values.

struct ndigo6gl2_device

Contains information of the Ndigo6G-12 device in use.

Public Members

bool is_valid
void *ndigo6gl12

structndigo6gl2_init_parameters

Struct for the initialization of the Ndigo6G-12.

This structure MUST be completely initialized.

Public Members

int version

The version number.

It is increased when the definition of the structure is changed. The increment can be larger
than 1 to match driver version numbers or similar. Set to O for all versions up to first release.

Must be set to NDICO6G12_API_VERSION.

int card_index

The index in the list of Ndigo6G-12 boards that should be initialized.

There might be multiple boards installed in the system that are handled by this driver as
reported by ndigo6g12_count_devices(). This index selects one of them. Boards are enumer-
ated depending on the PCle slot. The lower the bus number and the lower the slot number

the lower the card index.

int board_id

The global index in the list of all cronologic devices.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

This 8-bit number is filled into each packet created by the board and is useful if data-streams
of multiple boards will be merged. If only Ndigo6G-12 boards are used, this number can be
set to card_index. If boards of different types that use a compatible data format are used in a
system, each board should get a unique ID.

int64_t buffer_size[8]

The minimum size of the DMA buffer.

If set to O, the default size of 64 MiBytes is used. For the Ndigo6G-12 only the first entry is
used.

intdma_read_delay

The update delay of the writing pointer after a packet has been send over PCle.

Default is 1000. Do not change.

int perf_derating

Default O, corresponding to 1.6, 3.2, or 6.4 Gsps (depending on application_type).

For internal use only. Do not change.

int led_flashing_mode
Controls the LED flashing mode.

Define what LEDs do during initialization:
- O: LEDs are off

- 1: LEDs light up once

int clock_source

Defines which clock source is used (internal, SMA, AUX2).

Must be one of the following:

NDIGO6G12_CLOCK_SOURCE_INTERNAL

Device is using the internal 10 MHz clock.

NDIGO6G12_CLOCK_SOURCE_SMA

Use an external 10 MHz clock as reference. The input is the SMA socket located on the
board.

NDIGO6G12_CLOCK_SOURCE_AUX2

Use an external 10 MHz clock as reference. The input is the TRG LEMO connector located
on the slot bracket.

uint32_t application_type
Select the application type.

Note that ndigo6g12_configuration::adc_mode must match the application type chosen
here.

34 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Must be one of the following:

NDIGO6G12_APP_TYPE_AVRG
Averaging mode at 6.4 Gsps.

For more information, see Section 2.6.

NDIGO6G12_APP_TYPE_4CH
Four ADC channels at 1.6 Gsps.

NDIGO6G12_APP_TYPE_2CH
Two ADC channels at 3.2 Gsps.

NDIGO6G12_APP_TYPE_1CH
One ADC channel at 6.4 Gsps.

NDIGO6G12_APP_TYPE_CURRENT

Use currently installed application type.

crono_bool_t force_bitstream_update

Force a bitstream update that configures the FPGA.

During the initialization of the board, a bitstream configures the FPGA of the Ndigo6G-12.
This is only done if during the initialization of the Ndigo6G-12, application_type is differ-
ent from the application_type that the Ndigo6G-12 is currently configured in. That is, the
FPGA is only reconfigured, if application_type changes.

By setting force_bitstream_update to true, one can force a reconfiguration of the FPGA.

int partial_bitstream_size

Size of partial_bitstream.

Reserved for future expandability.

uint32_t *partial_bitstream

Pointer to a buffer with partial bitstream data.

Can be nullptr if application_type matches application_type of currently installed
firmware.

Reserved for future expandability.

const char *firmware_locations

Location where firmware is installed.

Pointer to a list of paths (separated by ;) Can be nullptr if application_type matches appli-
cation_type of currently installed firmware.

35 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

3.3 Status information

The driver provides functions to retrieve detailed information on the type of board, it's configuration,
settings and state. The information is split according to its scope and the computational requirements to
guery the information from the board.

intndigo6gl2_get_driver_revision()

Get the driver version in integer format.

Returns
The driver version in the same format as ndigo6g12_static_info:driver_revision.

const char *ndigo6gl2_get_driver_revision_str()

Get the driver version in string format.

Returns
The Driver version including SVN build revision as a string with format x.y.z.svn.

intndigo6gl2_count_devices (int *error_code, const char **error_message)

Get the number of Ndigo6G-12 boards that are installed in the system.
Parameters
- error_code - [out] Pointer to an integer in which to store the error code.

- error_message — [out] Location in which to store the error message as plain
text.

Returns
The number.

intndigo6gl2_get_static_info(ndigo6gl2_device *device, ndigo6g12_static_info *static_info)

Get the static information.
The static information does not change after the device initialization.
Parameters
- device - [in] Pointer to the device from which to get the information.
- static_info - [out] Pointer to a structure in which to store the information.

Returns
See Function return values.

intndigo6gl2_get_param_info (ndigo6g12_device *device, ndigo6g12_param_info *param_info)

Get parametric information.
The parametric information may change due to the configuration.
Parameters
- device - [in] Pointer to the device from which to get the information.
- param_info - [out] Pointer to a structure in which to store the information.

Returns
See Function return values.

intndigo6gl2_get_fast_info (ndigo6gl2_device *device, ndigo6g12_fast_info *fast_info)

Get fast status information.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

The information can be retrieved within a few microseconds.
Parameters
- device - [in] Pointer to the device from which to get the information.
- fast_info - [out] Pointer to a structure in which to store the information.

Returns
See Function return values.

intndigo6gl2_get_pcie_info (ndigo6gl2_device *device, crono_pcie_info *pcie_info)

Reads the PCle info like correctable and uncorrectable errors.
Parameters
- device - [in] Pointer to the device.
- pcie_info - [out] Pointer to the structure in which to store the information.

Returns
See Function return values.

struct ndigo6gl2_param_info

Contains configuration changes.
Structure filled by ndigo6g12_get_param_info(). This structure contains information that may
change indirectly due to configuration changes.

Public Members

double bandwidth
Bandwidth.

4.5 or 6.5 GHz depending on ndigo6g 12_configuration::extended_bandwidth.

int resolution

ADC sample resolution.

Always 12 bit.

double sample_rate

Actual ADC sample rate of currently sasmpled data.

Depending on ndigo6g12_configuration:adc_mode, that is, sample_rate = 6.4 GHz / chan-
nels.

double sample_period

The period that one sample in the data represents in picoseconds.

double tdc_period

The period that one TDC bin in the data represents in picoseconds.

double packet_ts_period

37 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

The period that one tick of the packet timestamp represents in picoseconds.

uint64_t tdc_packet_timestamp_offset
The TDC packet timestamp offset.

Since TDC packets carry the timestamp of the end of the packet, to calculate the start,
tdc_packet_timestamp_offset hasto be subtracted.

uint32_t tdc_rollover_period

Time span of one TDC timestamp rollover period in units of the TDC binsize.

All TDC hits within this period are written to one crono_packet.

double adc_sample_delay

The delay of the ADC samples relative to TDC timestamps in picoseconds.

Note: For driver release 2.2.0 with firmware 1.25086, this value is bugged.

int board_id

The ID the board uses to identify itself in the output data stream.

Takes values O to 255.

int channels

Numlber of ADC channels in the current mode.

See ndigo6g12_configuration:adc_mode.

int channel_mask

Mask with a set bit for each enabled input channel.

int tdc_channels

Numlber of TDC channels in the current mode.

inte4_t total_buffer
The total amount of the DMA buffer in bytes.

int samples_per_clock

The number of samples in one clock cycle in the current mode.

struct ndigo6gl2_static_info

Structure contains static information.

This structure contains information about the board that does not change during run time. It is
provided by ndigo6g12_get_static_info().

38 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Public Members

char bitstream_date[NDIGO6GC12_BITSTREAM_DATE_LEN]
Bitstream creation date.
DIN EN ISO 8601 string YYYY-MM-DD HH:DD:SS describing the time when the bitstream was

created.

int board_configuration
Describes the schematic configuration of the board.
The same board schematic can be populated in multiple variants. This is a 8-bit code that can

be read from a register.

int board_revision

Board revision number.

The board revision number can be read from a register. It is a four bit number that changes
when the schematic of the board is changed.

- 0: Experimental version of the first board. Labeled “Rev. 1".

- 2: First commercial version. Labeled “Rev. 2"

int board_serial

The board’s serial number.

With year and running number in 8.24 format (yy.nnn; 8 bits are used to encode the year, 24
bits to encode the number).

The number is identical to the one printed on the silvery sticker on the board.

char calibration_date[NDIGO6GC12_CALIBRATION_DATE_LEN]
Calibration date.
DIN EN ISO 8601 string YYYY-MM-DD HH:DD describing the time when the card was cali-
brated.

int chip_id
16-bit factory ID of the ADC chip.

This is the chiplD as read from the 16-bit ADC chip-ID register.

crono_bool_tdc_coupled

Shows if the inputs are DC-coupled.

Default is false, that is, AC-coupled.

intdriver_revision

Encoded version number for the driver.

The lower three bytes contain a triple-level hierarchy of version numbers. E.g.,, 0x010103
encodes version 1.1.3.

39 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

A change in the first digit generally requires a recompilation of user applications. Change in
the second digit denote significant improvements or changes that don't break compatibility
and the third digit changes with minor bugfixes and the like (see https://semver.org)/).

intdriver_build_revision

The build number of the driver according to cronologic’s internal versioning system.

crono_bool_t flash_valid

Calibration data read from flash is valid.

If not false, the driver found valid calibration data in the flash on the board and is using it.

int fw_revision

Revision number of the FPGA configuration.

int fw_type
Type of firmware, always 5 -> Ndigo6G-12.

int pcb_serial

Trenz serial number.

int svn_revision

Subversion revision ID of the FPGA configuration.

A number to track builds of the firmware in more detail than the firmware revision. It changes
with every change in the firmware, even if there is no visible effect for the user. The subversion
revision number can be read from a register.

intapplication_type

Shows the initialized mode.

See NDIGO6G12_APP_TYPE_* constants.

char config_flash_signature_primary[NDICO6GC12_FLASH_SIG_LEN]

Shows the signature of the primary flash.

char config_flash_signature_secondary[NDIGO6G12_FLASH_SIG_LEN]

Shows the signature of the secondary flash.

double auto_trigger_ref_clock

Auto trigger clock frequency.

The clock frequency of the auto trigger in Hz used for the calculations of ndigo6g12_configu-
ration:quto_trigger_period.

Fixed at 200 MHz.

struct ndigo6gl2_fast_info
Contains fast dynamic information.

40 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://semver.org/
https://www.cronologic.de

This structure is filled by ndigo6g12_get_fast_info(). This information can be obtained within a few
microseconds.

Public Members

int state

The current state of the device.

Is one of the following:

NDIGO6G12_DEVICE_STATE_INITIALIZED

Device is initialized but not yet configured for data capture.

NDIGO6G12_DEVICE_STATE_CONFIGURED

Device is ready for data capture.

NDIGO6G12_DEVICE_STATE_CAPTURING

Device has started data capture.

int fan_speed

Speed of the FPGA fan in rounds per minute.

Reports O if no fan is present.

double fpga_temperature

Temperature of the FPGA in °C.

double fpga_vccint

Internal Voltage of the FPGA in V. Useful debugging information.

double fpga_vccaux

Auxillary Voltage of the FPGA in V. Useful debugging information.

double fpga_vccbram
BRAM Voltage of the FPGA in V. Useful debugging information.

double mgt_0v9

Shows measured voltage for the mgt_0v9 power supply in V. Useful debugging information.

doublemgt_1v2

Shows measured Voltage for the mgt_1v2 power supply in V. Useful debugging information.

double adc_2v5h

Shows measured voltage for the 2v5 power supply in V. Useful debugging information.

double clk_3v3
Shows measured voltage for the clk_3v3 power supply in V. Useful debugging information.

41 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

double adc_3v3

Shows measured voltage for the adc_3v3 power supply in V. Useful debugging information.

double pcie_3v3

Shows measured voltage for the pcie_3v3 power supply in V. Useful debugging information.

double opamp_5v2

Shows measured voltage for the opamp_5v2 power supply in V. Useful debugging informa-
tion.

double temp4633_1

Shows temperature of voltage regulartor U3_1 in °C.

double temp4633_2

Shows temperature of voltage regulator U3_2 in °C.

double temp4644

Shows temperature of voltage regulator U4 in °C.

double tdcl_temp
Temperature of the TDC-chip in °C.

double evl12_cmiref

Shows voltage for differential ADC input common mode voltage in V.

Measured or calibration target depending on board revision and assembly variant.

double evl2_temp
Temperature of the ADC in °C.

intalerts

Alert bits from temperature sensor and the system monitor.

Bit O is set if the TDC temperature exceeds 140°C. In this case the TDC shut down and the
device needs to be reinitialized.

Is one of the following:

NDIGO6G12_ALERT_FPGA_TEMPERATURE
FPGA temperature alert (> 70°C)

NDIGO6G12_ALERT_VCCINT
Internal FPGA voltage out of range (< 0.83 V or > 0.88 V).

NDIGO6G12_ALERT_VCCAUX
FPGA auxiliary voltage out of range (< 1.75V or > 1.89 V).

42 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

NDIGO6G12_ALERT_FPGA_TEMPERATURE_CRITICAL
FPGA temperature critical (> 80°C)

NDIGO6G12_ALERT_THS_TEMPERATURE_CRITICAL
THS temperature critical (> 140°QC)

intpcie_link_width

Number of PCle lanes the card uses.

Should always be 8 for the Ndigo6G-12.

intpcie_link_speed

Data rate of the PCle card.

Should always be 3 for the NdigoeG-12.

int pcie_max_payload

Maximum size for a single PCle transaction in bytes.

Depends on the system configuration.

crono_bool_t adc_data_pll_locked
ADC data clock is PLL locked.

crono_bool_t adc_data_pll_lost_lock
ADC data clock PLL lost lock (Sticky Bit).

intadc_lanes_synced

Shows the synced ADC lanes.

Each bit corresponds to one lane. Useful debugging information.

intadc_lanes_lost_sync

Shows the ADC lanes that lost sync.

Each bit corresponds to one lane. Useful debugging information.

intadc_lanes_fifo_empty

Shows which ADC lanes have an empty FIFO.

Each bit corresponds to one lane. Useful debugging information.

intadc_lanes_fifo_full

Shows which ADC lanes have a full FIFO.

Each bit corresponds to one lane. Useful debugging information.

intadc_lanes_running
Shows which ADC lanes are running.

43 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Each bit corresponds to one lane. Useful debugging information.

intadc_lanes_sync_timeout

Shows which ADC lanes were unable to sync before a timeout.

Each bit corresponds to one lane. Useful debugging information.

intadc_sync_retry_count

The number of ADC lane synchronization retries.

Default is set to 0. Useful debugging information.

intadc_sync_strobe_retry_count

The number of ADC strobe synchronization retries.

Default is set to 0. Useful debugging information.

intadc_sync_delay_count

16 Bit number showing when the last ADC lane synchronization was achieved.

Useful debugging information.

crono_bool_t adc_mgt_power_good

Shows if the supplied mgt power is sufficient.

Useful debugging information.

crono_bool_t Imk_pll1l_locked
Shows if Imk_pll1 is locked. Useful debugging information.

crono_bool_t Imk_pl12_locked
Shows if Imk_pll2 is locked. Useful debugging information.

crono_bool_t1mk_lost_lock

Shows if Imk lost lock. Useful debugging information.

int lmk_lock_wait_count

Wait count of the Imk. Useful debugging information.

int lmk_ctrl_vcxo

Usefull for hardware debugging.

crono_bool_t Imx_locked

Imx locked. Useful debugging information.

crono_bool_t Imx_lost_lock

Imx lost lock. Useful debugging information.

int lmx_lock_wait_count
44 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Imx lock wait count. Useful debugging information.

struct crono_pcie_info

Structure containing PCle information.
Public Members

uint32_t pwr_mgmt

Organizes power supply of PCle lanes.

uint32_t 1link_width

Number of PCle lanes that the card uses.

Should be 1, 2, or 4 for Ndigo5G and 1, 2, 4, or 8 for the Ndigo6G-12. Ideally, should be the
respective maximum.

uint32_t max_payload

Maximum size in bytes for one PCle transaction.

Depends on the system configuration.

uint32_t 1ink_speed
Data rate of the PCle card.

Depends on the system configuration.

uint32_t error_status_supported

Different from O if the PCle error status is supported for this device.

uint32_t correctable_error_status

Correctable error status flags, directly from the PCle config register.

Useful for debugging PCle problems. O, if no error is present, otherwise one of CRONO_PCIE_*

uint32_tuncorrectable_error_status

Uncorrectable error status flags, directly from the PCle config register.

Useful for debugging PCle problems. O, if no error is present, otherwise one of
CRONO_PCIE_UNC_*.

uint32_t reserved

For future extension.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

3.4 Configuration

The Ndigo6G-12 board is configured with a configuration structure (ndigo6gl2_configuration).

The user should first obtain a standard set of configuration parameters using ndigo6gl2_get_de-
fault_configuration(),then modify only the necessary parameters to their specific needs.

The configuration itself is done by calling ndigo6g12 configure ().

intndigo6gl2_get_default_configuration (ndigo6gl2_device *device, ndigo6gl12_configuration
*config)

Copies the default configuration to the specified config pointer.

Default values of ndigo6g12_configuration:

- adc_mode =

NDIGO6G12_ADC_MODE_A (if application_type = NDIGO6G12_APP_TYPE_1CH)

NDIGO6G12_ADC_MODE_AD (if application_type = NDIGO6G12_APP_TYPE_2CH)

NDIGO6G12_ADC_MODE_ABCD (if application_type = NDIGO6G12_APP_TYPE_4CH)

NDIGO6G12_ADC_MODE_A (if application_type = NDIGO6G12_APP_TYPE_AVRG)

- gdc_cal_set=3
- analog_offsets[i] = O
- tdc_trigger_offsets[i] = NDIGO6G12_DC_OFFSET_N_NIM
- trigger]i]:
- edge = true
- rising = false
- threshold =512
- trigger_blocKli]:
- enabled = false
- retrigger = false
- multi_shot_count =1
- precursor =0
- length =16
— sources = NDIGO6G12_TRIGGER_SOURCE_O
- gates = NDIGO6G12_TRIGGER_GATE_NONE
- minimum_free_packets =0
- gating_blocK][i]:
- negate = false
- retrigger = false

- start=0

46 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

- stop =1000
- sources = NDIGO6G12_TRIGGER_SOURCE_O
- tdc_configuration:
- channelli]:
* enable = false
* gating_block:
- enable = false
- negate = false
- retrigger = false
- retrigger = NDIGO6G12_TRIGGER_SOURCE_AUTO
- start=0
- stop = 1000
- sources = NDIGO6G12_TRIGGER_SOURCE_O
* tiger_block:
- mode = NDIGO6G12_TIGER_OFF
- negate = true
- retrigger = false
- retrigger = NDIGO6G12_TRIGGER_SOURCE_AUTO
- start=0
- stop=1
- sources = NDIGO6G12_TRIGGER_SOURCE_O
- skip_alignment = false
- alignment_mode = false
- alignment_pin_high_z = false
- alignment_pin_invert = false
- alignment_phase_steps = 6
- send_empty_packets = false
- auto_trigger_period = 200000
- auto_trigger_random_exponent =0
- output_mode =

- NDIGO6G12_OUTPUT_MODE_SIGNED32 (if application_type =
NDIGO6G12_APP_TYPE_AVRG)

- NDIGO6GC12_OUTPUT_MODE_SIGNED16 (otherwise)

. extended_bandwidth = false

47 cronologic CmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

- ramp_test_mode = false

Parameters

- device - [in] Pointer to the device from which to get the information.

- config - [out] Pointer to a structure in which to store the configuration values.
Returns

See Function return values.

intndigo6gl2_configure (ndigo6gl2_device *device, ndigo6g12_configuration *config)
Configures the Ndigo6G-12 device.

The config information is copied such that it can be changed after the call to ndigo6g12_configure.
Parameters
- device - [in] Pointer to the device from which to get the information.
- config - [out] Pointer to the configuration structure.

Returns
See Function return values.

struct ndigo6gl2_configuration

Structure that contains the configuration values for the Ndigo6G-12.
This structure contains the configuration information. It is used in conjunction with
ndigo6gl12_get_default_configuration() and ndigo6g12_configure().

Public Members

int adc_mode

Configure ADC mode.
The chosen ADC mode has to be supported by the current NDICO6G12_APP_TYPE.

For example, if NDIGO6G12_ APP TYPE 1CH is used, one cannot choose, e.g., adc_mode
= NDIGO6G12 ADC MODE AA, but one hasto either choose NDIGO6G12_ ADC MODE_A or
NDIGO6G12_ ADC_MODE_D.

Default value depends on ndigo6g12_init_parameters:application_type.
- NDICGO6G12_APP_TYPE_4CH: NDIGO6G12_ADC_MODE_A
- NDIGO6G12_APP_TYPE_2CH: NDIGO6G12_ADC_MODE_AD
- NDIGO6G12_APP_TYPE_1CH: NDIGO6G12_ADC_MODE_ABCD

For more information, see Section 2.1.

Must be one of the following:

NDIGO6G12_ADC_MODE_ABCD

4-channel mode at 1600 Msps sample rate

NDIGO6G12_ADC_MODE_AADD
48 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

4-channel mode at 1600 Msps sample rate

NDIGO6G12_ADC_MODE_AAAA

4-channel mode at 1600 Msps sample rate

NDIGO6G12_ADC_MODE_DDDD

4-channel mode at 1600 Msps sample rate

NDIGO6G12_ADC_MODE_AD

2-channel mode at 3200 Msps sample rate

NDIGO6G12_ADC_MODE_AA

2-channel mode at 3200 Msps sample rate

NDIGO6G12_ADC_MODE_DD

2-channel mode at 3200 Msps sample rate

NDIGO6G12_ADC_MODE_A

1-channel mode at 6400 Msps sample rate

NDIGO6G12_ADC_MODE_D

1-channel mode at 6400 Msps sample rate

intadc_cal_set

Select ADC calibration set.

Default is 3. Do not change.

double analog_offsets[NDIGO6G12_ADC_CHANNEL_COUNT]
Set the offsets of the ADC inputs in V.

The indices O to 3 of the array correspond to ADC channels A to D.
Must be between + 0.5 V.

Defaults are O V for each ADC channel.

double tdc_trigger_offsets[NDIGCO6G12_TDC_CHANNEL_COUNT]
Set DAC for trigger threshold of the TDC inputs in V.

Channel assignment:
- 0 to 3: high-resolution TDC, inputs E to H
- 4 and 5: inputs TRG and GATE

Set to a value between -1.32 Vand +2.0 V.

This should be close to 50% of the height of your pulses on the inputs. Examples for various
signaling standards are defined below. The inputs are AC coupled. This means that for pulse

49 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

inputs the absolute voltage is not important. Only the relative pulse amplitude causes the
input circuits to switch. tdc_trigger_offset for an input must be set to the relative switch-
ing voltage for the input standard in use. If the pulses are negative, a negative switching
threshold must be set and vice versa.

Defaults are NDIGO6G12_DC_OFFSET_N_NIM for each TDC channel.

Defines for various signal standards:

NDIGO6G12_DC_OFFSET_P_NIM

NDIGO6G12_DC_OFFSET_P_CMOS

NDIGO6G12_DC_OFFSET_P_LVCMOS_33

NDIGO6G12_DC_OFFSET_P_LVCMOS_25

NDIGO6G12_DC_OFFSET_P_LVCMOS_18

NDIGO6G12_DC_OFFSET_P_TTL

NDIGO6G12_DC_OFFSET_P_LVTTL_33

NDIGO6G12_DC_OFFSET_P_LVTTL_25

NDIGO6G12_DC_OFFSET_P_SSTL_3

NDIGO6G12_DC_OFFSET P_SSTL_2

NDIGO6G12_DC_OFFSET_N_NIM

NDIGO6G12_DC_OFFSET_N_CMOS

NDIGO6G12_DC_OFFSET_N_LVCMOS_33

NDIGO6G12_DC_OFFSET_N_LVCMOS_25

NDIGO6G12_DC_OFFSET_N_LVCMOS_18

NDIGO6G12_DC_OFFSET_N_TTL

NDIGO6G12_DC_OFFSET_N_LVTTL_33

NDIGO6G12_DC_OFFSET_N_LVTTL_25

50 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

NDIGO6G12_DC_OFFSET_N_SSTL_3

NDIGO6G12_DC_OFFSET_N_SSTL_2

ndigo6gl2_trigger trigger[NDIGO6G12_TRIGGER_COUNT]

Configuration of the external trigger sources.
The entries in the array correspond to the following defines.
ndigo6gl2_trigger:threshold is ignored for index NDICO6G12_TRIGCCER_TDCO and above.

ndigo6gl2_trigger:edge and ndigo6gl2_trigger:rising are ignored for indeces
NDIGO6GC12_TRIGGER_AUTO and NDIGO6G12_TRIGGER_ONE.

NDIGO6G12_TRIGGER_AO

NDIGO6G12_TRIGGER_A1

NDIGO6G12_TRIGGER_BO

NDIGO6G12_TRIGGER_B1

NDIGO6G12_TRIGGER_CO

NDIGO6G12_TRIGGER_C1

NDIGO6G12_TRIGGER_DO

NDIGO6G12_TRIGGER_D1

NDIGO6G12_TRIGGER_TDCO

NDIGO6G12_TRIGGER_TDC1

NDIGO6G12_TRIGGER_TDC2

NDIGO6G12_TRIGGER_TDC3

NDIGO6G12_TRIGGER_TRG

NDIGO6G12_TRIGGER_GATE

NDIGO6G12_TRIGGER_AUTO

51 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

NDIGO6G12_TRIGGER_ONE

NDIGO6G12_TRIGGER_FPGAO
Deprecated. Alias for NDICO6G12_TRICCGER_TRG.

NDIGO6G12_TRIGGER_FPGA1
Deprecated. Alias for NDIGO6GC12_TRIGGER_GATE.

ndigo6gl2_trigger_block trigger_block[NDICO6G12_ADC_CHANNEL_COUNT]
Trigger settings of ADC inputs.

The number of input channels depends on ADC mode.

ndigo6gl12_gating_block gating_block[NDICGO6G12_GATE_COUNT]
Configuration of gating blocks.

Gating blocks are used to filter trigger.

ndigo6gl2_tdc_configuration tdc_configuration

Configuration of TDC channels.

ndigo6gl2_averager_configuration average_configuration

Configuration of the Averager.

intauto_trigger_period

Component to create a trigger either periodically or randomly.

To be exact, there are two parameters M = quto_trigger_period and N = auto_trigger_ran-
dom_exponent that result in a distance between triggers of T = M + [1...2N] — 1 clock cycles,
where 6 <M < 232 and 0 < N < 32.

There is no enable or reset as the usage of this trigger can be configured in the channels.
Each clock cycle is 5 ns.

Default is 200000, corresponding to a 1 kHz auto trigger.

intauto_trigger_random_exponent

Component to create a trigger either periodically or randomly.
See aquto_trigger_period.

Default is O.

int output_mode

Output mode of the ADC data.
Default value depends on ndigo6g12_init_parameters:.application_type.
- NDIGO6G12_APP_TYPE_AVRG: NDIGO6G12_OUTPUT_MODE_SIGNED32

- otherwise: NDICO6GC12_OUTPUT_MODE_SIGNED16.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Must be one of the following:

NDIGO6G12_QUTPUT_MODE_RAW
Return the native range (O to 4095) augmented by two ADC control bits per sample.

Not supported for user applications.

NDIGO6G12_OUTPUT_MODE_SIGNED16

Return a signedl16 integer.

The range is -32768 to 32767.

NDIGO6G12_QUTPUT_MODE_SIGNED32
Output in signed32 integer format.

Must be used in (and only in) averaging mode. The range is -231 to 231 - 1.

NDIGO6G12_QUTPUT_MODE_RAW_NO_CB
Return the native range (O to 4095).

For more information, see Section 4.3.

crono_bool_t extended_bandwidth

Extended bandwidth.
If true, the input bandwidth is 6.5 GHz instead of the default 4.5 GHz.

Since the extended input bandwidth of the ADC influences the total bandwidth of the
NdigoeG-12 board only in a minimal manner, we recommend using the non-extended
input bandwidth of 4.5 GHz. This ensures the best signal-to-noise ratio.

Default is false.

crono_bool_t ramp_test_mode

Default is false. Do not change.

crono_bool_t sample_averaging

Calculate sample average for multi-sampling modes AAAA, DDDD, AADD, AA, and DD.
Manipulate the output in multi-sampling modes.

- true: Average all ssamples and combine them to a single output.

- false: Output all samples in their own package.

For more information, see Multiple Sampling Modes in Section 2.1.

struct ndigo6gl2_trigger

Structure that contains trigger settings.

53 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Public Members

short threshold

Threshold controlling when the ADC channel is active.

Sets the threshold for the trigger block within the range of the ADC data. The range depends
on ndigo6g12_configuration:output_mode:

- NDIGO6G12_OUTPUT_MODE_RAW : 0 to 4095

+ NDIGO6G12_OUTPUT_MODE_SIGNED16 and NDIGO6G12_OUTPUT_MODE_SIGNED32 :
-32768to 32767

For trigger indices NDIGO6G12_TRIGGER_TDC to NDICO6GC12_TRIGGER_ONE the threshold
is ignored.

For the TDC channels, the trigger threshold is controlled by ndigo6g12_configura-
tion:tdc_trigger_offsets.

o Note

NDIGO6G12 OUTPUT MODE_SIGNED32 is only used for NDIGO6G12_ APP_TYPE_AVRG.

crono_bool_t edge

Enables edge-trigger functionality.

For trigger indices NDICO6C12_TRIGCER_AUTO and NDICO6C12_TRIGCER_ONE thisis
ignored.

- false: Use a level trigger. The level trigger triggers as long as the signal is above or
below (depending on rising) the set threshold. Followingly, the trigger gives the sign of
the signal in reference to the threshold.

- true: Use an edge trigger. The edge trigger triggers as soon as its set threshold is
crossed by the signal. Thus, the roots in reference to the threshold are recorded.

Default is true.

crono_bool_trising

Sets rising-edge trigger functionality.

For trigger indices NDICO6GC12_TRIGGER_AUTO and NDICO6GC12_TRIGGER_ONE, this is
ignored.

- Ifedgeis true (i.e, an edge trigger is used):
- false: Trigger when the signal crosses from above to below the threshold.
- true: Trigger when the signal crosses from below to above the threshold.
- Ifedgeis false (i.e., a level trigger is used):
- false: Triggers the part of the signal below the threshold.
- true: Triggers the part of the signal above the threshold.

Default is false.

54 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

struct ndigo6gl2_trigger_block
Configuration of the trigger block.

Public Members

crono_bool_t enabled

Activates triggers on this channel.

crono_bool_t retrigger
Enable retrigger functionality.
If a new trigger condition occurs while the postcursor is acquired (i.e., within the time frame

controlled by length), the packet is extended by starting a new postcursor. Otherwise the new
trigger is ignored and the packet ends after the postcursor of the first trigger.

intmulti_shot_count
Number of packets created in single-shot mode (i.e., ndigo6g12_single_shot() was called)
before packet generation stops.

This value is ignored if enabled is true.
Maximum is NDIGO6G12_MAX_MULTISHOT.

Note: Up to firmware revision 1.24120, this feature is bugged in 4-channel mode while
multi shot count > 1.

int precursor
Precursor in multiples of 5 ns.

The amount of data preceding a trigger that is captured. The maximum is
NDIGO6GC12_MAX_PRECURSOR.

int length
Length of the postcursor in multiples of 5 ns.
The total amount of data that is recorded in addition to the trigger window is controlled

by length and precursor. precursor determines the amount of data before the trigger
window, length the amount of data after the trigger condition was false the first time.

In edge-trigger mode , the trigger window is always 1 (i.e., 5 ns long). Otherwise, (level-trigger
mode) the trigger window is as long as the trigger condition was fulfilled.

The maximum value is NDICO6G12_FIFO_DEPTH minus ndigo6g12_trigger_block:precursor
minus trigger window.

int sources
A bit mask with a bit set for all trigger sources that can trigger this channel.

Default NDICO6GC12_TRIGGER_SOURCE_O (NDIGO6C12_TRIGGER_SOURCE_AO for ADC
channel A, NDICO6G12_TRICGER_SOURCE_BO for ADC channel B, etc).

int gates

55 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

A bit mask with a bit set for all trigger gates.
Mask which selects the gates that have to be open for the trigger block to use.
Default NDIGO6G12_TRIGGER_GATE_NONE.

The following defines can be used to create the bit mask:

NDIGO6G12_TRIGGER_GATE_NONE

NDIGO6G12_TRIGGER_GATE_O

NDIGO6G12_TRIGGER_GATE_1

NDIGO6G12_TRIGGER_GATE_2

NDIGO6G12_TRIGGER_GATE_3

double minimum_free_packets
Number of packets that fit into the FIFO.
This parameter sets how many packets are supposed to fit into the on-board FIFO before
a new packet is recorded after the FIFO was full, i.e., a certain amount of free space in the

FIFO is demanded before a new packet is written after the FIFO was full. As a measure for the
packet length, the recording window as defined by precursor and length is used.

The on-board algorithm checks the free FIFO space only in case the FIFO is full. Therefore, if
this number is 1.0 or more, at least every second packet in the host buffer is guaranteed to
have the full length set by the precursor and length. In many cases smaller values will also

result in full length packets. But below a certain value multiple packets that are cut off at the
end will show up.

Default is O.

struct ndigo6gl2_gating_block
Contains settings of the gating block.

After a signal at one of the sources is detected, a timer starts running. Once the timer reaches
the value specified by start, a gate is opened (or closed, depending on negate) until the timer
reaches the time specified by stop.

What happens in the event that another signal before stop is detected is controlled by retrigger.
See also Section 2.4.

Public Members

crono_bool_t negate

Invert output polarity.

If false (true) the gate is opened (closed) inbetween the times specified by start and
stop.

56 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Default is false.

crono_bool_t retrigger

Enable retriggering.

If enabled and a second trigger event is detected before the timer reaches stop, the timer is
restarted. Otherwise signals at the input sources are ignored until stop is reached.

Default is false.

int start

The time from the first input signal seen in the idle state until the gating output is set.
In multiples of 5 ns. O < start < 2!¢ while start < stop.

Default is O.

int stop

The number of samples from leaving the idle state until the gating output is reset.
In multiples of 5 ns. 0 < stop < 21, while stop = start.

Default is 1000.

int sources

Bit mask with a bit set for all trigger sources that can trigger this channel.

Default NDICO6G12_TRIGGER_SOURCE_O (NDIGO6GC12_TRICGGER_SOURCE_AO for ADC
channel A, NDIGO6G12_TRIGGER_SOURCE_BO for ADC channel B, etc).

struct ndigo6gl2_tdc_configuration

Contains configuration information of the TDC channels.

Public Members

ndigo6g12_tdc_channel channel[NDICO6G12_TDC_CHANNEL_COUNT]
Configure polarity, type and threshold for the TDC channels.

crono_bool_t skip_alignment

Configure THS788 calibration.

- true: Skip THS788 calibration.

- false: Do THS788 calibration (default).

Default is false.

crono_bool_t alignment_mode

Align TDC channels.

Default is false.

57 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

crono_bool_talignment_pin_high =z

Default is false.

crono_bool_talignment_pin_invert

Defaultis false.

intalignment_phase_steps

Default is 6.

crono_bool_t send_empty_packets

Default is false.

struct ndigo6gl2_averager_configuration

Contains averaging settings.

Public Members

int iterations

Set the number of trigger events that are averaged.

Must be O if no averaging application is installed on the Ndigo6G-12 (see ndigo6g12_init_pa-
rameters::application_type).

Default is O.

crono_bool_t stop_on_overflow

Stops averaging before an overflow can happen.
Stops the averaging once averaging_value = max_averaging_value - max_ADC_value or
averaging_value < min_averaging_value - min_ADC_value to prevent overflow.

- max(min)_averaging_value is 2097151 (-2097152)

- max(min)_ADC_value is 32768 (-32767)

Defaultis false.

crono_bool_t stop_manual

Stops the averaging manually.

Software stop for averaging. If an averaging iteration has already started it is finished before
the averaging will stop.

Defaultis false.

crono_bool_tuse_saturation

Determines if saturation arithmetic is used by the averager.

- true: Instead of averaging_value over(under)flowing once max(min)_averaging_value is
reached, the maximum (minimum) value is kept.

58 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

- false: Once averaging_value reaches max(min)_averaging_value, averaging_value will

over(under)flow and wrap around.

See stop_on_overflow for the values of averaging_value and max(min)_averaging_value.

Default is true.

crono_bool_t stop_on_timeout

Determine if the averager stops on timeout.
The timeout time is configured by timeout_threshold.

Default is false.

int timeout_threshold

Set the number of microseconds until timeout.

Must be O if no averaging application is installed on the Ndigo6G-12 board.

Default is O.

struct ndigo6gl2_tdc_channel

Contains TDC channel settings.

Public Members

crono_bool_t enable

Enable TDC channel.

Default is false.

crono_bool_t reserved3

Reserved for future extension.

crono_bool_t reserved?2

Reserved for future extension.

crono_bool_t reservedil

Reserved for future extension.

ndigo6gl2_tdc_gating_block gating_block
Configuration of the gating blocks.

ndigo6gl2_tdc_tiger_block tiger_block
Configuration of the TiGer blocks.

struct ndigo6gl2_tdc_gating_block

Contains settings of the gating blocks specifically for the TDCs.

The functionality is similiar to ndigo6g12_gating_block.

59 cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Public Members

crono_bool_t enable

Activates gating block.

crono_bool_t negate

Inverts output polarity.

Defaultis false.

crono_bool_t retrigger

Enable retriggering.

If enabled and a second trigger event is detected before the timer reaches stop, the timer is
restarted. Otherwise signals at the input sources are ignored until stop is reached.

Defaults to false.

int start

The time from the first input signal seen in the idle state until the gating output is set.
In multiples of 5 ns. O < start < 21¢, while start < stop.

Default is O.

int stop

The number of samples from leaving the idle state until the gating output is reset.
In multiples of 5 ns. O < stop < 21, while stop = start.

Default is 1000.

int sources

Bit mask with a bit set for all trigger sources that can trigger this channel.

Default NDIGO6G12_TRIGGER_SOURCE_O (NDICO6G12_TRIGGER_SOURCE_AO for ADC
channel A, NDICO6C12_TRIGGER_SOURCE_BO for ADC channel B, etc).

struct ndigo6gl2_tdc_tiger_block

Contains settings of TiGer block.

The configuration is similiar to ndigo6g12_gating_block.
Public Members

int mode

Enables the desired mode of operation for the TiGer.
Default is NDICO6G12_TIGER_OFF.

Must be one of the following:

NDIGO6G12_TIGER_OFF
60 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

TiGer deactivated.

NDIGO6G12_TIGER_QUTPUT
Pulse height is approximately 2 V.

Connected hardware must not drive any signals to the connectors used as outputs, as do-
ing so could damage both the Ndigo6G-12 and the external hardware. We recommend
to only use short pulses to avoid undesirable baseline shift due to the AC coupling, but
the device does not pose any restrictions on the duty cycle. This mode can be used as a
clock output with a frequency of 75/N MHz (for integer N).

NDIGO6G12_TIGER_BIDI
Pulse height is approximately 1 V.

The LEMO connector may be used as input with OR function. Use short pulses to keep
the probability of collision and the effect on the baseline low.

NDIGO6G12_TIGER_BIPOLAR

TiGer pulses are bipolar.
Not supported for inputs TRG and GATE.

In this mode, the connector creates bipolar pulses with 1 V amplitude. The connector can
still be used as an input. Pulses have no effect on the baseline offset.

The TiGer should be configured with start=stop + 1for minimium-width bipo-
lar pulses. The maximum bipolar pulse width is NDIGO6G12_TIGER_MAX_BIPO-
LAR_PULSE_LENGTH.

crono_bool_t negate

Set pulse polarity.
The TiGer creates a high pulse from start to stop unless negated.

Default is true.

crono_bool_t retrigger

Enable retriggering.

If enabled and a second trigger event is detected before the timer reaches stop, the timer is
restarted. Otherwise signals at the input sources are ignored until stop is reached.

Defaults to false.

int start

The time from the first input signal seen in the idle state until the TiGer outputs a signal.
In multiples of 5 ns. O < start < 2!®, while start < stop.

Default is O.

int stop
The number of samples from leaving the idle state until the TiGer output is reset.

61 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

In multiples of 5 ns. O < stop <216 while stop = start.

Note that the maximum length for bipolar pulses is given by NDIGO6G12_TIGER_MAX_BIPO-
LAR_PULSE_LENGTH.

Default is 1.

int sources

Bit mask with a bit set for all trigger sources that can trigger this channel.

Default NDIGCO6G12_TRIGGER_SOURCE_O (NDIGO6GC12_TRIGGER_SOURCE_AO for ADC
channel A, NDICO6C12_TRIGGER_SOURCE_BO for ADC channel B, etc).

3.5 Runtime control

intndigo6gl2_start_capture (ndigo6gl2_device *device)

Start data acquisition.

Parameters
device - [in] Pointer to the device.

Returns
See Function return values.

int ndigo6gl2_stop_capture (ndigo6gl2_device *device)

Stop data acquisition.

Parameters
device - [in] Pointer to the device.

Returns
See Function return values.

intndigo6gl2_manual_trigger (ndigo6gl2_device *device, int channel_mask)

Enables manual triggering of the ADC channels.
Parameters
- device - [in] Pointer to the device.
- channel_mask - [in] A bit mask that chooses which channels to trigger.

Returns
See Function return values.

intndigo6gl2_single_shot (ndigo6g12_device *device, int channel_mask)

Enables single-shot recording of the ADC channels.

Instead of continously triggering on input signals, only trigger and record a ndigo6g12_trig-
ger_block:multi_shot_count number of events.

Note: Up to firmware revision 1.24120, this feature is bugged in 4-channel mode while
ndigo6g12_trigger_block:multi_shot_count >1.

Requires that ndigo6g12_trigger_block:enabled is false.
Parameters

- device - [in] Pointer to the device.

62 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

- channel _mask - [in] A bit mask that chooses which channels to trigger.

Returns
See Function return values.

intndigo6gl2_clear_pcie_errors (ndigo6gl2_device *device, int flags)

Clear PCle errors.
Only useful for PCle problem debugging flags.
Parameters
- device - [in] Pointer to the device.
- flags - [in] Specify which flags to clear.
- CRONO_PCIE_CORRECTABLE_FLAG: clear all correctable errors
- CRONO_PCIE_UNCORRECTABLE_FLAG: clear all uncorrectable errors

Returns
char array containing the plain text error message.

Relevant defines:

CRONO_PCIE_CORRECTABLE_FLAG

CRONO_PCIE_UNCORRECTABLE_FLAG

3.6 Readout

After an Ndigo6G-12 board is initialized and capturing, the captured events can be read from the board
with ndigo6g12 read (). The read-out data is packaged in packets (see Chapter 4).

intndigo6gl2_read (ndigo6gl2_device *device, ndigo6g12_read_in *in, ndigo6g12_read_out *out)

Reads packets from the board.

If ndigo6gl12_read_in:acknowledge_last_read is true, automatically acknowledges the last read
packets.

Parameters
- device - [in] Pointer to the device that should be read.
- in -[in] Pointer to the structure that configures the read call.
- out - [out] Pointer to a structure in which the read-out should be stored.

Returns
See Function return values.

const char *ndigo6gl2_get_last_error_message (ndigo6gl2_device *device)

Gets latest error message of device.

Parameters
device - [in] Pointer to the device.

Returns
char array containing the plain text error message.

63 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

const char *ndigo6gl2_device_state_to_str(int state)

Convert state to plain text.

Parameters
state - [in] The device state as stored in ndigo6g12_fast_info:state.

Returns
char array containing the state as plain text.

struct ndigo6gl2_read_in

The parameters of the read commmands.
Public Members

crono_bool_t acknowledge_last_read

Automatically acknowledge packets from the previous call of ndigo6g12_read.

Only acknowledged packets will release the memory of the DMA buffer.

struct ndigo6gl2_read_out
Struct for the read-out of the Ndigo6G-12 packets.

Public Members

volatile crono_packet *first_packet

Pointer to the first packet.

That is, the pointer that was captured by the call of ndigo6g12_read.

volatile crono_packet *1ast_packet

Pointer to the last packet.

int error_code

Error code.

Is one of the following:

CRONO_READ_OK

Reading packets from the device was successful.

CRONO_READ_NO_DATA
Trying to read packets does not yield data.

CRONO_READ_INTERNAL_ERROR

Some unhandled error occured. A device reinit is required.

CRONO_READ_TIMEOUT

Trying to read packets does not yield data in the given amount of time.

64 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

const char *error_message

Plain text error message.

65 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

4 Packet Format

Packets are retrieved by ndigo6g12 read (). They are of type crono_packet.

- Each hit on an ADC channel is stored in one packet. The format of the payload data (see
crono_packet: :data)is explained in Section 4.3.

- Al TDC hits within the time given by ndigo6gl2 param info::tdc_rollover periodare
stored in a single packet (stored in the payload data). The memory layout thereof is shown in
Section 4.4,

6 Note

The minimum packet length depends on the application type. See Section 2.1 for details.

4.1 Output Structure crono_packet

struct crono_packet

uint8_t channel

Source channel of the data.

Values correspond to the following:

0x0-0x3: ADCA-D

> Ox4: TDC channels. Which specific TDC channel is encoded in crono_packet: :data.

uint8_t card
ID of the card.

uint8_t type
Type of the packet.

Different packet types correspond to different encodings of crono_packet: :data.
Is one of the following:

CRONO_PACKET_TYPE_16_BIT_SIGNED
Used for ADC data.

crono_packet: :data must be cast to int16_t and crono_packet: :length must be
multiplied by 4.

CRONO_PACKET_TYPE_TDC_DATA
Used for TDC data.

crono_packet: :data must be cast touint32_t and crono_packet: :length must
be multiplied by 2.

CRONO_PACKET_TYPE_AVRG_DATA

66 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

67

Used for averaged ADC data.

crono_packet: :data must be cast touint32_t and crono_packet: :length must
be multiplied by 2.

uint8_t flags

Bit field of the following flags:

CRONO_PACKET_FLAG_SHORTENED

Packet was truncated because internal FIFO was full.

This means that less than the requested number of samples have been written.

CRONO_PACKET_FLAG_PACKETS_LOST
Lost triggers preceeded this packet due to insufficient DMA buffers.

The DMA controller has discarded packets due to the full host buffer.

CRONO_PACKET_FLAG_OVERFLOW

The packet contains ADC sample overflows.

CRONO_PACKET_FLAG_TRIGGER_MISSED

Lost triggers preceeded this packet due to insufficient buffers.

The trigger unit has discarded packets due to a full FIFO.

CRONO_PACKET_FLAG_DMA_FIFO_FULL
The internal DMA FIFO was full.

Triggers only got lost if a subsequent package has crono_packet:flags with a bit weight
CRONO_PACKET_FLAG_TRIGGER_MISSED set.

CRONO_PACKET_FLAG_HOST_BUFFER_FULL
The host buffer was full.
Triggers only got lost if a subsequent package has crono_packet:flags with a bit weight

CRONO_PACKET_FLAG_TRIGGER_MISSED set.

CRONO_PACKET_FLAG_TDC_NO_EDGE

The packet from a TDC does not contain valid data.
Hence, the timestamp is not corrected. No valid edge was found for the TDC.

For TDC data, can also be one of the following:

NDIGO6G12_TDC_PACKET_FLAG_RESERVED

NDIGO6G12_TDC_PACKET_FLAG_CONTAINS_DATA

Packet contains at least one TDC event.

NDIGO6G12_TDC_PACKET_FLAG_LOST

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

At least one packet was lost due to full FIFO.

NDIGO6G12_TDC_PACKET_FLAG_SHORTENED
The trigger unit has shortend the current packet due to full FIFO.

NDIGO6G12_TDC_PACKET_FLAG_DMA_FIFO_FULL
The DMA FIFO was full.

Trigger only got lost if a subsequent package has crono_packet:flags with a bit weight
NDIGO6GC12_TDC_PACKET_FLAG_LOST set.

NDIGO6G12_TDC_PACKET_FLAG_HOST_BUFFER_FULL
The host buffer was full.

Trigger only got lost if a subsequent package has crono_packet:flags with a bit weight
NDIGO6G12_TDC_PACKET_FLAG_LOST set.

uint32_t length

Length of crono_packet : :data in multiples of 64 bits. The actual length of
crono_packet: :data dependson crono_packet: :type.

uint64_t timestamp

Timestamp of the packet.

For the Ndigo6G-12, this corresponds to the beginning of the packet data.

uinte4_t datafl]
Payload data of the packet.

The length of data corresponds to crono_packet: : length.

The data type must be cast according to crono_packet: : type, and the data encoding also
depends on crono_packet: :type.

See Section 4.3 for the data encoding of ADC data.
See Section 4.4 for the data encoding of TDC data.

See Section 4.5 for the data encoding of averaged ADC data.

4.2 Utility macros

The following macros can be used to navigate through the packets obtained by ndigo6g12 read().

crono_packet_data_length(current)

Returns the length of crono_packet:data in multiples of 8 bytes.

crono_packet_bytes (current)

Returns the length of crono_packet:data including its header in bytes.

crono_next_packet (current)

Returns a crono_packet pointer pointing to the next packet in the host buffer.

Must be checked before use to not point beyond the last packet of the readout data, e.g,,
crono_next_packet (current_packet) <= readout_data.last_packet.

68 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

4.3 Data encoding for ADC hits

data, that is, the packet-data payload, depends on ndigo6gl2_configuration: :output_mode. The
length of the data array is encoded in 1ength. Be aware that 1ength is in multiples of 64 bit, while the
size of the fields of data depends on type.

Thus, reading packet data requires the following steps:

- Depending on crono_packet : : type, multiply length appropriately. E.g., if typeis
CRONO_PACKET TYPE_16_BIT SIGNED, length hasto be multiplied by 4 (since 4 x 16 bit =
64 bit).
- Cast data according to type. E.g., if typeis CRONO_PACKET TYPE 16_BIT SIGNED, cast data to
intl6_t.
4.3.1 NDIGO6G12_OUTPUT_MODE_SIGNED16

Raw data of the ADC is mapped to the range of a sighed16 integer (-32768 to 32767). Packet data must
be castto int16_t.

432 NDIGO6G12_OUTPUT MODE_RAW

Packet data is returned in the native range of the ADC (0 to 4095). It must be castto int16_t.

Data layout:
Bit 15 14 13 12 11 10 0
Data 0 0 control bits sample data

4.3.3 NDIGO6G12_OUTPUT MODE_RAW_NO_CB

Packet data is returned in the native range of the ADC (0 to 4095). It must be cast to int16_t. Unlike
NDIGO6G12_ OUTPUT MODE RAW, it does not contain control bits.

A Attention

NDIGO6G12 OUTPUT MODE_RAW and NDIGO6G12 OUTPUT MODE_RAW_NO_CB are useful for

debugging purposes. They are not supported for user applications. Use NDIGO6G12_ 0UT-
PUT MODE_SIGNEDI16 instead.

4.3.4 NDIGO6G12_ OUTPUT MODE_SIGNED32

Only used if ndigo6gl2 init_parameters: :application_typeis NDIGO6G12_ APP_TYPE AVRG.See
Section 4.5 for more information.

4.4 Data encoding for TDC hits

The following bit table shows the encoding of the payload data (crono_packet : :data) of all recorded
TDC hits within the time-frame given by ndigo6g12_param_info::tdc_rollover_period.

Bit 31 30 9 8 7 6 5 4 3 2 1 0]

Data Timestamp TDC hit flags Channel number

69 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

70

Details:

- The timestamp is relative to crono_packet : : timestamp and is given in units of
ndigo6gl2 param_info::tdc_period.

- The channel numbers are:
0x0: TDC channel 1
0x1: TDC channel 2
0x2: TDC channel 3
0x3: TDC channel 4
0x4: TRG
0xb: GATE
0xD: Dummy data

OxF': Rollover marker

The TDC hit flags are one of the following:

NDIGO6G12_TDC_HIT_FLAG_LOST

At least one preceding event was lost due to full FIFO.

NDIGO6G12_TDC_HIT_FLAG_ROLLOVER_LOST

Rollover has been lost due to full FIFO.

Results in a fatal error.

NDIGO6G12_TDC_HIT_FLAG_VALID

Timestamp is a valid TDC event.

NDIGO6G12_TDC_HIT_FLAG_GROUP_TIME_ROLLOVER

Timestamp is a rollover marker.

Add ndigo6g12_param_info:tdc_rollover_period to all subsequent timestamps in the packet.

NDIGO6G12_TDC_HIT_ERROR_MASK
TDC hit flag mask for error reporting.

NDIGO6G12_TDC_HIT_TYPE_MASK
TDC hit flags mask for timestamp type.

NDIGO6G12_TDC_PADDING_DATA_CHANNEL
TDC hit channel number for padding-data.

Padding-data can be ignored. Does not contain any usefull information. Padding-data has
NDIGO6G12_TDC_HIT_FLAG_GROUP_TIME_ROLLOVER and NDIGO6G12_TDC_HIT_FLAG_VALID
always cleared.

NDIGO6G12_TDC_ROLLOVER_CHANNEL

TDC hit channel number for rollover marker.
Rollover marker has NDICO6G12_TDC_HIT_FLAG_GCROUP_TIME_ROLLOVER always set.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

71

4.5 Data encoding for averaged ADC hits

When using NDIGO6G12_APP_TYPE AVRG, the first two 64-bit words of crono_packet: :data are the
extended header containing more information, as shown in the following bit table.

Bits 127 — 38 27 — 32 31—-12 11-0
Data reserved flags reserved iterations performed
Flags:

- 0x01: stopped iterations prematurely
- 0x02: overflow detected

- 0x04: stopped by timeout

- 0x08: stopped by software

- 0x10: stopped by overflow

The following data words contain the raw ADC data mapped to the range of a signed32 integer (-23! to
231 -1). Thus, crono_packet: :data must be cast to int32_t and crono_packet: : length must be
multiplied by 2 taking into account the extended header. That is,

.

uint32_t extended_header_length = 2;
uint32_t sample_count = ((pkt->length - extended_header_length) * 2);
int32_t* adc_data = (int32_t*) (pkt->data + extended_header_length);
for (uint32_t i = 0; i < sample_count; i++) {

/* work with adc_datal[i] */
}

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

10
11
12
13
14
15
16
17
18
19
20

21

72

5 C++-Example

The following source code is an example of an Ndigo6G-12 application written in C++. The source code is
also available on our GitHub.

Source file Description

ndigo6gl2_example.cop Main source-code file of the example application.

ndigo6gl12_app.h Header file for classes for different Ndigo6G-12 application typesand
TDC setup.

ndigo6g12_adc_sin- Implementation of application type NDIGO6G12_ APP TYPE 1CH

gle.cpp

ndigo6gl2_adc_dualcpp Implementation of application type NDIGO6G12 APP_TYPE 2CH

ndigo6gl2_adc_quad.cpp |Implementation of application type NDIGO6G12_ APP_TYPE 4CH

ndigo6gl12_adc_aver- Implementation of application type NDIGO6G12_ APP TYPE AVRG.
ager.cpp

ndigo6g12_tdc.cop Implementation of the TDC-class.

delay.h Implementation for measuring delays.

5.1 ndigo6gl2_example.cpp

// Example application for the Ndigo6G-12
//

#include '"ndigo6gl2 app.h"

#include '"ndigo6glZ2Z_interface.h"

#include <map>

#include <stdio.h>

#include <stdlib.h>

std: :map<int, std::string> appTypeMap = {{1, "One ADC channels ©6.4 Gsps"},
{2, "Two ADC channels @3.2 Gsps"},
{4, "Four ADC channels @1.6 Gsp"},
{5, "Averaging mode ©6.4 Gsps'"}};

std: :map<int, std::string> requirementsMap = {
{0,
"Starts the test of the currently configured app type"},
{1,
"Measure time distance between passing of "
"threshold, calculates the frequency, requires NIM signal on channel A"},
{2, "Dual-channel application that measures delay between start "
"pulse on channel A and stop pulse on channel D (NIM)"},
(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://github.com/cronologic-de/ndigo6g_babel/tree/main/ug_example
https://www.cronologic.de

22
23
24
25
26
27
28
29
30
31
32

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

73

(continued from previous page)
{4, "Quad-channel application that measures delay between start "
"pulse on channel A and stop pulses on channels B-D (NIM)"},
{5, "Measure time distance between averaged start on TRG (NIM) and stop on "
"channel A (falling) by summing data of 16 runs "
"to increase precision of measurement for signal with low amplitude'"}};

Ndigo6GApp *adcApp;
ndigo6gl2_param_info paramInfo;

// initialize Ndigo6G-12 device
ndigo6gl2_device initialize_ndigo6gl2(int bufferSize, int boardId,
int cardIndex, int appType, int,
~tdcChannels) {
// prepare initialization
ndigo6gl2_init_parameters params;
// fill initialization data structure with default values
// so that the data is valid and only parameters
// of interest have to be set explicitly
ndigo6gl2_get_default_init_parameters(¶ms) ;
params.application_type = appType;

params.buffer_size[0] = bufferSize; // size of the packet buffer

params.board_id = boardId; // value copied to "card" field of every packet,
// allowed range O..255

params.card_index = cardIndex; // which of the Ndigo6G-12 board found in

// the system to be used

// this specifies the directories or the specific .cronorom if dynamic

// switching of appType is required. If not specified, the example will

// return an error if the appType does not match the current appType in the

// firmware

params.firmware_locations = ".";

// initialize card

int errorCode;

const char *errorMessage;

ndigo6gl2_device device;

errorCode = ndigo6gl2_init(&device, ¶ms, &errorMessage);

if (errorCode != CRONO _OK) {
printf("Could not init Ndigo6G-12: %s\n", errorMessage);
printf("Please change path to the .cronorom in ndigo6gl2_example.cpp\n");
exit(1);

// check if firmware now supports the chosen application type
ndigo6gl2_static_info si;
ndigo6gl2_get_static_info(&device, &si);
if (si.application_type !'= appType) {
printf ("The switch to appType did not work, please make sure that "
"the firmware file is provided");

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
a1
92
93
94
95
96
97
98
99

100

101

104
105
106
107
108
109
110
111
112
113
114
115
116

117

74

int

(continued from previous page)
ndigo6gl2_close(&device);
exit(1);
¥
if (appType == 0) {
appType = si.application_type;

+

switch (appType) {

case 1:
adcApp = new Ndigo6GAppSingle(tdcChannels);
break;

case 2:
adcApp = new Ndigo6GAppDual (tdcChannels);
break;

case 4:
adcApp = new Ndigo6GAppQuad(tdcChannels);
break;

case 5:
adcApp = new Ndigo6GAppAverager (tdcChannels);
break;

default:
printf ("Not supported appType %d'\n", appType);
ndigo6gl2_close(&device);
exit(1);

+

printf ("Running in %s\n%s\n", appTypeMaplappTypel.c_str(),
requirementsMap [appType] .c_str());
return device;

configure_ndigo6gl2(ndigo6gl2_device *device, int adcThreshold) {
// prepare configuration
ndigo6gl2_configuration config;

// fill configuration data structure with default values

// so that the configuration is valid and only parameters

// of interest have to be set explicitly

if (CRONO_OK '= ndigo6gl2_get_default_configuration(device, &config)) {
printf ("Could not get default configuration: %s\n",

ndigo6gl2_get_last_error_message(device));

ndigo6gl2_close(device);
return 1;

[KA A A A A A HAHAAHA A A HA A A HAAFAHAAFAH A A HAHAAHA A A A A A A A AHAAFAHAAFAHAAFA K
// configuration for the TDC channels
adcApp—>ConfigureTDC(&config) ;

[[R A A A KA A A A KK A KA A A A A KA A A A A A A A KA A A A A A A A A KA A A A A K
// configuration for the ADC channels
adcApp—>ConfigureADC(&config, adcThreshold);

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

124
125
126
127
128
129
130
131
132
133
134

135

139
140
141
142
143
144
145
146
147
148
149
150

151

154
155
156
157
158
159
160
161
162
163
164
165
166

167

75

(continued from previous page)

// write configuration to board
int error_code = ndigo6gl2_configure(device, &config);
if (error_code != CRONO_OK) {
printf ("Could not configure Ndigo6G-12: %s\n",
ndigo6gl2_get_last_error_message(device));
return 1;
+
ndigo6gl2_get_param_info(device, ¶mInfo);
adcApp->SetParamInfo (¶mInfo) ;
return O;

// print some basic information about the Ndigo6G-12 device
void print_device_information(ndigo6gl2_device *device) {
ndigo6gl2_static_info si;
ndigo6gl2_get_static_info(device, &si);
printf ("Firmware revision %d.%d - Type %d\n", si.fw_revision,
si.svn_revision, si.application_type);
printf ("Firmware Bitstream Timestamp : %s\n", si.bitstream_date);

printf("Calibration date . %s\n", si.calibration_date);

printf ("Board serial : %d.%d\n", si.board_serial >> 24,
si.board serial & Oxffffff);

printf ("Board revision : %d\n", si.board revision);

printf ("Board configuration : %d\n", si.board_configuration);

printf ("Driver Revision o %d.%d . %d\n",

((si.driver revision >> 16) & 255),
((si.driver_revision >> 8) & 255), (si.driver revision & 255));
printf ("Driver Build Revision : %»d\n", si.driver build revision);

ndigo6gl2_fast_info fi;
ndigo6gl2_get_fast_info(device, &fi);

printf ("TDC temperature : %.2f C\n", fi.tdcl_temp);

printf ("ADC temperature : %.2f C\n", fi.ev12_temp);

printf ("FPGA temperature : %.2f C\n", fi.fpga_temperature);
printf ("PCIe link speed : Gen. %d\n", fi.pcie_link_ speed);
printf ("PCIe link width : %d lanes\n", fi.pcie_link_width);
printf ("PCIe payload : %d bytes\n", fi.pcie_max_payload);

ndigo6gl2_param_info pi;
ndigo6gl2_get_param_info(device, &pi);

printf ("Sample rate : %.0f Msps\n",

pi.sample_rate / 1000000.0);
printf ("Resolution : %d Bit\n", pi.resolution);
printf ("Sample period © %.2f ps\n", pi.sample_period);
printf ("TDC bin size : %.2f ps\n", pi.tdc_period);
printf ("Packet Timestamp period © %.2f ps\n", pi.packet_ts_period);
printf ("ADC Sample delay © %.2f ps\n", pi.adc_sample_delay);

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

173
174
175
176
177
178
179
180
181
182
183
184
185

186

188
189
190
191
192
193
194
195
196
197
198
199
200
201

202

204
205
206
207
208
209
210
211
212
213
214
215
216
217

218

220

76

(continued from previous page)

int main(int argc, char xargv([]) {
if (argc < 2) {

printf ("Usage: ndigo6gl2_example <appType> [<tdcMask>]\n");

for (auto atPair : appTypeMap) {
int at = atPair.first;
printf ("AppType %d: %s\n %s\n", at, appTypeMaplat].c_str(),

requirementsMap[at].c_str());

}

printf("tdcMask: Bit flag for TDC channels E-H\n");

exit(1);

int appType = atoi(argv([1]);
int tdcChannelMask = 0;
if (argc > 2) {
tdcChannelMask = atoi(argv[2]);
+
// use 128 MiByte to buffer incoming data
// largest ADC data packet has about 500 KiByte
const int64_t BUFFER_SIZE = 128 *x 1024 x 1024;

// use the first Ndigo6G-12 device found in the system
const int CARD_ INDEX = O;

// set board ID in all packets to 0
// can be used to distinguish packets of multiple devices
const int BOARD_ID = O;

printf ("cronologic ndigo6gl2_example using driver: %s\n",
ndigo6gl2_get_driver_revision_str());

// create and initialize the device
// may fail if the device is already in use by another process
// or the device driver is not installed
ndigo6gl2_device device =
initialize_ndigo6gl2(BUFFER_SIZE, BOARD_ID, CARD_INDEX, appType,
tdcChannelMask) ;

print_device_information(&device);

// set the configuration required for capturing data
// the base line is shifted by +350mV, as the target is to trigger at
// middle of the NIM pulse edge
int adcThreshold = 0;
int status = configure_ndigo6gl2(&device, adcThreshold);
if (status !'= 0) {
exit(1);

// configure readout behaviour

the

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

224
225
226
227
228
229
230
231
232
233
234
235

236

239
240
241
242
243
244
245
246
247
248
249
250
251

252

254
255
256
257
258
259
260
261
262
263
264
265
266

267

77

(continued from previous page)
// automatically acknowledge all data as processed
// on the next call to ndigo6gl2 read()
// old packet pointers are invalid after calling ndigo6gl2_ read()
ndigo6gl2_read_in readConfig;
readConfig.acknowledge_last_read = 1;

// structure with packet pointers for read data
ndigo6gl2_read_out readData;

// start data capture
status = ndigo6gl2_start_capture(&device);
if (status !'= CRONO _OK) {
printf("Could not start capturing: %s",
ndigo6gl2_get_last_error_message(&device)) ;
ndigo6gl2_close(&device) ;
exit(1);

// get current sample rate to calculate event timestamps
ndigo6gl2_param_info paramInfo;
ndigo6gl2_get_param_info(&device, ¶mInfo);

// ADC data is provided in packets, one packet per ADC channel and trigger
// TDC data is provided in a single packet for all TDC inputs in a certain
// timespan

printf ("\nReading packets:\n");

const int MAX PACKET_COUNT = 70;
int packetCount = O;
bool noDatalastTime = false;
while ((packetCount < MAX_PACKET_COUNT)) {

// get pointers to acquired packets

status = ndigo6gl2_read(&device, &readConfig, &readData);

if (status != CRONO _0K) {

if ('noDatalastTime) {
printf(" - No data! -\n");

+

noDatalastTime = true;
} else {

noDatalastTime = false;

// iterate over all packets received by the last read
volatile crono_packet *p = readData.first_packet;
while (p <= readData.last_packet) {

if (p->channel < 4) {
// packets with channel number < 4 are ADC data
double packet_ts =
adcApp—>ProcessADCPacket (const_cast<crono_packet *>(p));
} else {

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

271

273
274
275
276
277
278
279
280
281
282
283
284
285

286

288
289

290

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

78

(continued from previous page)
// packets with channel number >= 4 are TDC data
adcApp->ProcessTDCPacket (const_cast<crono_packet *>(p));

b

// go to next packet
p = crono_next_packet(p);

packetCount++;
} // end: iterate over received packets
+ // end: Got any packets?
+ // end: while

// shut down packet generation and DMA transfers
ndigo6gl2_stop_capture(&device) ;

// deactivate Ndigo6G-12
ndigo6g12_close(&device);

return O;

5.2 ndigo6gl2_app.h

#pragma once

#include '"delay.h"

#include '"ndigo6glZ2 interface.h"
#include <map>

#include <string>

#include <vector>

// Base class for Ndigo6G applications
// contains common code for packet processing
class Ndigo6GApp {
protected:
const int PRECURSOR = 1;
// contains the timing parameters of the current mode like sample period
ndigo6gl2_param_info *pi;
int adcThreshold;
int tdcChannelMask;
// convenience method for adding the TDC channels to the channel map
void AddTDCChannels(std::map<int, std::string> &channelMap) {
for (int i = 0; i < 4; i++) {
if (tdcChannelMask & (1 << 1)) {
channelMap[4 + i] = (char)'E' + (char)i;

public:

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

79

(continued from previous page)

Ndigo6GApp(int tdcChannelMask) { this->tdcChannelMask = tdcChannelMask; }

// configure the Ndigo6G with the appropiate mode and triggers
virtual void ConfigureADC(ndigo6gl2_configuration *config,
int adcThreshold) = O;

virtual void ConfigureTDC(ndigo6gl2_configuration *config);

// react to an ADC incoming packet
virtual double ProcessADCPacket(crono_packet *pkt) = 0;

// set the parameters after configuration was successful
virtual void SetParamInfo(ndigo6gl2_param_info *pi) { this->pi = pi; }

// called by the main loop on a TDC packet arrival
virtual void ProcessTDCPacket (crono_packet *pkt);

// react to an incoming TDC packet, called by default implementation of
// ProcessTDCPacket
virtual void ProcessTDCTimestamp(int tdcChannel, double timestamp) {
printf ("TDC event on channel %d timestamp: %.3f ns\n", tdcChannel,
timestamp / 1000.0);
¥

// helper method to find the timestamp of the current packet
double ComputePacketTimestamp(volatile crono_packet *pkt) {
// calculate packet timestamp in picoseconds
// the precursor time is constant in the modes, but the amount of
// samples is different (32/16/8 for 1/2/4)
double packet_ts =
pkt->timestamp * pi->packet_ts_period - PRECURSOR * 5e3 ;
return packet_ts;

// Computes the falling edge in the given data, returns the absolute ps
// value, and -1 if threshold was not passed in the packet.
double ComputeFallingEdge (crono_packet *pkt) {
// packet length is number of 64-bit words of data
double packetTs = ComputePacketTimestamp (pkt) ;
// 4 ADC samples are stored in each 64-bit chunk of packet data
uint32_t sampleCount = (pkt->length * 4);

// ADC data is a signed 16-bit integer
int16_t *adc_data = (int16_t *) (pkt->data);

// find first falling edge in ADC data
for (uint32_t i = 0; i < (sampleCount - 1); i++) {
if (adc_datal[i] >= adcThreshold && adc _datali + 1] < adcThreshold) {
// calculate threshold crossing relative to start of packet
double feOffset = i;

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95

96

97
98
929
100
101
102
103
104
105

106

109
110
111
112
113
114
115
1le
117
118
119
120
121

122

80

(continued from previous page)
// linear interpolation of trigger threshold crossing
feOffset += (double) (adc_data[i] - adcThreshold) /
(adc_datal[i] - adc_datali + 1]);
// convert to picoseconds
feOffset *= pi->sample_period;

// calculate timestamp of threshold crossing in picoseconds
double fallingEdgeTs = packetTs + feOffset;

// adjust for ADC pipeline delay

fallingEdgeTs -= pi->adc_sample_delay;

return fallingFdgeTs;

+
b
return -1;
+
33
// maximum distance of two pulses, so that they are considered to be a cable,
~delay

static const double MAX DELAY PS = 500000. ;

class Ndigo6GAppSingle : public Ndigo6GApp {
private:
// last falling edge to compute the difference to
double lastFallingEdgeTs = O;

public:
Ndigo6GAppSingle (int tdcChannelMask) : Ndigo6GApp(tdcChannelMask) {
+
virtual void ConfigureADC(ndigo6gl2_configuration *config,
int adc_threshold);
virtual double ProcessADCPacket(crono_packet *pkt);
virtual void ProcessTDCTimestamp(int tdcChannel, double timestamp) {}

// Implementation of the different sample applications
class Ndigo6GAppDual : public Ndigo6GApp {
private:
DelayMeasurement delayMeasure;

public:

Ndigo6GAppDual (int tdcChannelMask) : Ndigo6GApp(tdcChannelMask) {
std: :map<int, std::string> channelMap = {{0, "A"}, {3, "D"}};
AddTDCChannels (channelMap) ;
delayMeasure.Init (0, MAX_DELAY_PS, channelMap);

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

129
130
131
132
133
134
135
136
137
138
139

140

144
145
146
147
148
149
150
151
152
153
154
155

156

159
160
161
162
163
164
165
166
167
168
169
170
171

172

81

(continued from previous page)

virtual void ConfigureADC(ndigo6gl2_configuration *config,
int adc_threshold) ;

virtual double ProcessADCPacket(crono_packet *pkt);

virtual void ProcessTDCTimestamp(int tdcChannel, double timestamp) ;
virtual void SetParamInfo(ndigo6gl2_param_info *pi) {
Ndigo6GApp: : SetParamInfo (pi);
// we have to wait for 3 TDC periods to make sure that the TDC data has
// arrived
delayMeasure.SetMaxWaitTime (pi->tdc_rollover_period * 3.5 *
pi->tdc_period);

+;

class Ndigo6GAppQuad : public Ndigo6GApp {
private:
DelayMeasurement delayMeasure;

public:
Ndigo6GAppQuad (int tdcChannelMask) : Ndigo6GApp(tdcChannelMask) {

std: :map<int, std::string> channelMap = {

{O, HAH}, {1, HBH}, {2’ HCH}, {3, HDH}};
AddTDCChannels (channelMap) ;
delayMeasure.Init (0, MAX_DELAY_PS, channelMap);

virtual void ConfigureADC(ndigo6gl2_configuration *config,
int adc_threshold);

virtual void SetParamInfo(ndigo6gl2_param_info #*pi) {
Ndigo6GApp: :SetParamInfo(pi);
// we have to wait for 3 TDC periods to make sure that the TDC data has
// arrived
delayMeasure.SetMaxWaitTime (pi->tdc_rollover_period * 3.5 *
pi->packet_ts_period);

virtual double ProcessADCPacket(crono_packet *pkt);

virtual void ProcessTDCTimestamp(int tdcChannel, double timestamp);

+;

class Ndigo6GAppAverager : public Ndigo6GApp {
private:
// last falling edge to compute the difference to
double lastFallingEdgeTs = O;

public:
(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

82

(continued from previous page)
Ndigo6GAppAverager (int tdcChannelMask) : Ndigo6GApp(tdcChannelMask) {}
virtual void ConfigureADC(ndigo6gl2_configuration *config,
int adc_threshold);
virtual double ProcessADCPacket(crono_packet *pkt);
F;

5.3 ndigo6gl2_adc_single.cpp

#include '"ndigo6glZ_app.h"

#include <stdio.h>

// a simple application that measures the distance of two packets and computes
// the frequency of the signal
double Ndigo6GAppSingle: :ProcessADCPacket (crono_packet *pkt) {

double fallingEdgeTs = ComputeFallingEdge (pkt) ;

if (fallingEdgeTs > 0) {
if (lastFallingEdgeTs > 0) {
double packetRate = (1.0 / (fallingEdgeTs - lastFallingEdgeTs));
double packetRateKHz = packetRate * 1e9;
printf ("ADC packet rate: %.3f kHz\n", packetRateKHz);
x
lastFallingEdgeTs = fallingEdgeTs;
+
return fallingFEdgeTs;

void Ndigo6GAppSingle: :ConfigureADC(ndigo6gl2_configuration *config,
int adcThreshold) {
this->adcThreshold = adcThreshold;
// single channel mode with 6.4 Gsps
config->adc_mode = NDIGO6G12_ADC_MODE_A;

// ADC sample value range -32768 .. 32767
config->output_mode = NDIGO6G12_OUTPUT_MODE_SIGNED16;

// enable ADC channel A and trigger on the falling edge of ADC data
// shift baseline of analog inputs to +350 mV
config->analog_offsets[0] = NDIGO6G12_DC_OFFSET_N_NIM * -1;

// trigger on falling edge of ADC data

config->trigger [NDIGO6G12_TRIGGER_AO] .edge = true;
config->trigger [NDIGO6G12_TRIGGER_AO] .rising = false;
config->trigger [NDIGO6G12_TRIGGER_AO] .threshold = adcThreshold;

// enable channel A
config->trigger_block[0].enabled = true;
// multiples of 32 ADC samples (5 ns recording time)

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

42
43
44
45
46
47
48
49

50

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

83

(continued from previous page)
config->trigger_block[0].length = 1;
// multiples of 32 ADC samples, gets added to packet length

config->trigger block[0] .precursor = PRECURSOR;

// select ADC data as trigger source of the channel
config->trigger_block[0] .sources = NDIGO6G12_TRIGGER_SOURCE_AO;

54 ndigo6gl2_adc_dual.cpp

#include '"ndigo6gl2 app.h"
#include <stdio.h>
#include <cmath>

// an application that measures the delay between a start signal (A) and a
// stop signal (D)
double Ndigo6GAppDual: :ProcessADCPacket (crono_packet *pkt) {

double falling_edge_ts = ComputeFallingEdge (pkt) ;

// gather data
if (falling edge_ts > 0) {

delayMeasure.InsertTimestamp (pkt->channel, falling edge_ts);
+

Delays #*delays = delayMeasure.MeasureDelays() ;
delayMeasure.PrintDelays(delays) ;

return falling edge_ts;
+
void Ndigo6GAppDual: :ProcessTDCTimestamp(int tdcChannel, double timestamp) {

//TDC channels are mapped as 4-7

delayMeasure.InsertTimestamp(4 + tdcChannel, timestamp);

Delays *delays = delayMeasure.MeasureDelays();

delayMeasure.PrintDelays(delays) ;

void Ndigo6GAppDual: :ConfigureADC(ndigo6gl2_configuration *config,
int adcThreshold) {
this->adcThreshold = adcThreshold;
// dual channel mode with 3.2 Gsps
config->adc_mode = NDIGO6G12_ADC_MODE_AD;

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78

84

(continued from previous page)

// ADC sample value range -32768 .. 32767
config->output mode = NDIGO6G12 OUTPUT MODE_SIGNED16;

// enable ADC channel A and trigger on the falling edge of ADC data
// shift baseline of analog inputs to +350 mV

// do the same for channel D

config->analog_offsets[0] = NDIGO6G12_DC_OFFSET_N_NIM * -1;
config->analog_offsets[3] = NDIGO6G12_DC_OFFSET_N_NIM * -1;

// trigger on falling edge of ADC data

config->trigger [NDIGO6G12_TRIGGER_AO] .edge = true;
config->trigger [NDIGO6G12_TRIGGER_AO] .rising = false;
config->trigger [NDIGO6G12_TRIGGER_AO] .threshold = adcThreshold;
config->trigger [NDIGO6G12_TRIGGER_DO] .edge = true;
config->trigger [NDIGO6G12_TRIGGER_DO] .rising = false;
config->trigger [NDIGO6G12_TRIGGER_DO] .threshold = adcThreshold;

// enable channel A
config->trigger block[0].enabled = true;

// in multiples of 16 ADC samples (5 ns recording time)
config->trigger_block[0].length = 1;

// in multiples of 16 ADC samples, gets added to packet length
config->trigger block[0] .precursor = PRECURSOR;

// select ADC data as trigger source of the channel
config->trigger block[0] .sources = NDIGO6G12_TRIGGER_SOURCE_AO;

// enable channel D
config->trigger block[3].enabled = true;

// in multiples of 16 ADC samples (5 ns recording time)
config->trigger block[3].length = 1;

// in multiples of 16 ADC samples, gets added to packet length
config->trigger_block[3].precursor = PRECURSOR;

// select ADC data as trigger source of the channel
config->trigger block[3].sources = NDIGO6G12_TRIGGER_SQURCE_DO;

5.5 ndigo6gl2_adc_quad.cpp

#include
#include
#include
#include

"'ndigo6gl2 app.h"
<stdio.h>

<cmath>

<array>

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

85

(continued from previous page)

// an application that measures the delay between a start signal (4)
// stop signals on channels B-D
double Ndigo6GAppQuad: :ProcessADCPacket (crono_packet *pkt) {

double falling edge_ts = ComputeFallingEdge (pkt) ;

// gather data
if (falling edge_ts > 0) {

delayMeasure.InsertTimestamp (pkt->channel, falling edge_ts);
+

Delays *delays = delayMeasure.MeasureDelays();
delayMeasure.PrintDelays(delays);

return falling edge_ts;

void Ndigo6GAppQuad: :ProcessTDCTimestamp(int tdcChannel, double timestamp) {
// insert TDC as channel 4-7
delayMeasure.InsertTimestamp(4 + tdcChannel, timestamp);

Delays *delays = delayMeasure.MeasureDelays();

delayMeasure.PrintDelays(delays);

void Ndigo6GAppQuad: :ConfigureADC(ndigo6gl2_configuration *config,
int adcThreshold) {
this->adcThreshold = adcThreshold;
// quad channel mode with 1.6 Gsps
config->adc_mode = NDIGO6G12_ADC_MODE_ABCD;

// ADC sample value range -32768 .. 32767

config->output_mode = NDIGO6G12_OUTPUT_MODE_SIGNED16;

// trigger on falling edge of ADC data

for (int index : {NDIGO6G12_TRIGGER_AO, NDIGO6G12_TRIGGER_BO,

NDIGO6G12 TRIGGER_CO, NDIGO6G12 TRIGGER DO}) {

config->trigger [index] .edge = true;
config->trigger[index] .rising = false;
config->trigger[index] .threshold = adcThreshold;

// the sources of each channel (they should trigger on the input data
// of the channel)
std: :array<int, 4> sources = {
NDIGO6G12_TRIGGER_SOURCE_AO, NDIGO6G12_TRIGGER_SOURCE_BO,
NDIGO6G12_TRIGGER_SOURCE_CO, NDIGO6G12_TRIGGER_SOURCE_DO};

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

86

(continued from previous page)
// enable ADC channels A-D and trigger on the falling edge of ADC data
// shift baseline of analog inputs to +350 mV
for (int ¢ = 0; ¢ < 4; c++) {
config->analog_offsets[c] = NDIGO6G12_DC_OFFSET_N_NIM * -1;

// enable channel
config->trigger block[c].enabled = true;

// in multiples of 8 ADC samples (5 ns recording time) after trigger
config->trigger block[c].length = 1;

// in multiples of 8 ADC samples, gets added to packet length
config->trigger block[c].precursor = PRECURSOR;

// select ADC data as trigger source of the channel
config->trigger_block[c].sources = sources[c];

5.6 ndigo6gl2_adc_averager.cpp

#include <stdio.h>
#include '"ndigo6gl2 app.h"

const int AVERAGING_COUNT = 16;
double Ndigo6GAppAverager: :ProcessADCPacket (crono_packet* pkt) {

// calculate packet timestamp in picoseconds
// not adjusted for ADC-data precursor
double packet_ts = pkt->timestamp * pi->packet_ts_period;

printf ("\nPacket timestamp: %.3f ns\n", (packet_ts / 1000.0));

// packet length is number of 64-bit words of data

// the first two 64-bit packet data words are additional header
// information

uint32_t data_offset = 2;

// only the first currently carries valid information

uint64_t averaging header0 = *(pkt->data);

// if bit is set, less than the requested number of iterations have been
// performed before writing the packet due to possible data overflow on
// the next iteration

bool stopped_due_to_overflow = (averaging headerO >> 32) & 0x1;

// if bit is set, the averaged data contains saturated or overflowed
// samples does NOT indicate that the input signal has not exceeded the
// ADC range

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

44
45
46

47

48

49
50

51

52
53
54
55
56
57
58
59

60

61
62
63
64
65
66
67
68
69
70
71
72

73

87

wpacket

~datali

wpicose

+3f ns\

void Ndi

~adcThr

cronologic GmbH & Co. KG

(continued from previous page)

bool averaging overflow = (averaging_ header0 >> 32) & 0x2;

// number of iterations; may be less than requested
int iterations_performed = (averaging headerO & Oxffffff);

// 2 averaged ADC samples are stored in each 64-bit chunk of packet data
uint32_t sample_count = ((pkt->length - data_offset) * 2);

// ADC data is a signed 32-bit integer
int32_t* adc_data = (int32_t*) (pkt->data + data_offset);

// find first falling edge in averaging data
for (uint32_t i = 0; i < sample_count - 1; i++) {
if (adc_datali] >= 0 &% adc_datali + 1] < 0) {
// calculate threshold crossing relative to start of

double fe offset = 1i;
// linear interpolation of trigger threshold crossing
fe offset +=
(double) (adc_datal[i] - 0) / (adc_datal[i] - adc_
+ 11);
// calculate timestamp of threshold crossing in
conds
fe_offset *= pi->sample_period;
printf("Falling edge event - offset to packet start: 7%.
n",
(fe_offset / 1000.0));
break;
+
b

return packet_ts;

go6GAppAverager: :ConfigureADC(ndigo6gl2_configuration* config,
int

eshold) {

// adcThreshold not used here, 0 is used as threshold for the data

config->adc_mode = NDIGO6G12_ADC_MODE_A;

// ADC sample value range -32768 .. 32767
// averaging data saturates at +/- 2721 - 1
config->output_mode = NDIGO6G12_OUTPUT_MODE_SIGNED32;

// enable ADC channel A and trigger on the falling edge of TRG input
// shift baseline of analog inputs to +350 mV
config->analog_offsets[0] = NDIGO6G12_DC_OFFSET_N_NIM * -1;

// trigger on falling edge of TRG input
config->trigger [NDIGO6G12_TRIGGER_TRG] .edge = true;

(continues on next page)

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

95

96

10
11
12
13
14
15
16
17
18
19
20
21

22

88

(continued from previous page)

config->trigger [NDIGO6G12_TRIGGER_TRG] .rising = false;

// set trigger level on TRG input to -350 mV
config->tdc_trigger_ offsets[4] = NDIGO6G12_DC_OFFSET_N_NIM;

// enable channel

config->trigger block[0] .enabled = true;

// multiples of 32 ADC samples (5 ns recording time)
config->trigger block[0].length = 32764;

// select TRG as trigger source of the channel
config->trigger_block[0].sources = NDIGO6G12_TRIGGER_SOURCE_TRG;

// configuration of the Averaging features
// number of events that are averaged/summed
config->average_configuration.iterations = AVERAGING_COUNT;

// saturate averaging data instead of overflow
config—>average_configuration.use_saturation = true;

// don't stop averaging if next iteration could lead to sample data
soverflow
config->average_configuration.stop_on_overflow = false;

5.7 ndigo6gl2_tdc.cpp

#include <stdio.h>
#include '"ndigo6gl2 app.h"

void Ndigo6GApp: :ProcessTDCPacket (crono_packet* pkt) {
// TDC packet timestamp relates to end of packet
// adjust for timespan covered
double packetTs =
(double) (pkt->timestamp - pi->tdc_packet_timestamp_offset);

// calculate packet timestamp in picoseconds
packetTs *= pi->packet_ts_period;

// packet length is number of 64-bit words of data
// 2 TDC events are stored in each 64-bit chunk of packet data
uint32_t tdcEventCount = pkt->length * 2;

// event encoding:
// Bits 31 downto 8: event timestamp in TDC bins relative to packet
// timestamp
// Bits 7 downto 4: event flags
// Bits 3 downto 0: channel number
(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

89

(continued from previous page)
uint32_t* tdcEventData = (uint32_t*) (pkt->data);

// each TDC packet covers up to 3 coarse TDC periods
// the end of one period is marked by an event on channel 15
uint32_t rolloverEra = 0;
// print all TDC timestamps of the packet
for (uint32_t i = 0; i < tdcEventCount; i++) {
// TDC channel number
// 0 - 3: LEMO inputs
// 15: internal marker: end of current TDC time frame
uint32_t tdcChannel = tdcEventDatal[i] & Oxf;
// event flags
uint32_t flags = (tdcEventDatali] >> 4) & Oxf;
// 24-bit timestamp
uint32_t event ts = tdcEventDatali] >> 8;

// valid input channel?
if (tdcChannel < 4) {
// add accumulated rollovers since start of packet
event ts += rolloverkra;
// calculate timestamp of TDC event in picoseconds
double edgeTsPs = event_ts * pi->tdc_period;
edgeTsPs += packetTs;
ProcessTDCTimestamp (tdcChannel, edgeTsPs);
printf ("TDC event on channel %d timestamp: packet,
~without "
"shift %.3f ns, "
"with shift %.3f ns, edge %.3f ns \n",
tdcChannel, (double) (pkt->timestamp * pi->packet_
~ts_period) / 1000.0,
packetTs / 1000., edgeTsPs / 1000.);

b

if (tdcChannel == 14) {
// dummy data, can be ignored
+

// rollover marker
if (tdcChannel == 15) {
rolloverEra += pi->tdc_rollover_period;

void Ndigo6GApp: :ConfigureTDC(ndigo6gl2_configuration* config) {
// enable TDC channels
for (int i = 0; i < NDIGO6G12_TDC_CHANNEL_COUNT; i++) {
// for NIM pulses: trigger at -350 mV
config->tdc_trigger_ offsets[i] = NDIGO6G12_DC_OFFSET_N_NIM;

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

71
72

73

74

75

76
77
78
79
80
81
82
83
84

85

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

20

(continued from previous page)

// enable TDC channel
config->tdc_configuration.channel[i].enable = (tdcChannelMask &,

// enable falling edge trigger as input to trigger matrix for
~selected

// TDC channel

// only required if used as trigger source for Gating, TiGer

// or ADC trigger blocks

config->trigger [NDIGO6G12_TRIGGER_TDCO + i].edge = true;

config->trigger [NDIGO6G12_TRIGGER_TDCO + i].rising = false;

// threshold not applicable for TDC inputs

// trigger threshold is set via tdc_trigger offsets[i]

config->trigger [NDIGO6G12_TRIGGER_TDCO + i].threshold = O0;

5.8 delay.h

#include <deque>
#include <map>
#include <string>
#include <vector>
#include <float.h>

// this utility class manages the arrival of timestamps for
// a number of channels and tries to group them to a start
// signal on one channel and stop signals on the other channels

// delay status

enum DelayStatus {
NotEnoughData, // we do not know, if the following signal has already arrived
StopsMissing, // some of the stops have arrived after a maximum wait time
Complete, // start and all expected stops were processed correctly
StartMissing

+;

class ChannellInfo {
public:
size_t index;
int channel;
std: :string name;
// contains the timestamps of pulses
std: :deque<double> timestamps;
bool early;
bool ok;
bool HasData() const { return timestamps.size() > 0; }
I

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

91

(continued from previous page)

// per channel output of delay measurement
class ChannelDelay {
public:

int channel;
bool missing;
bool isStart;
std::string name;
double delayPs;
// number of events that were ignored because of missing start
int ignoredCount;

+s

// output of delay measurement
class Delays {
public:
DelayStatus status;
std: :vector<ChannelDelay> channelDelays;
double startTimestamp;

+;

// class for measurement of delays between given number of channels

class DelayMeasurement {
std: :vector<ChannelInfo> channels;
// map from channel to the index in channels
std: :map<int, size_t> channellndexes;
//
Delays delays;
size_t startlIndex;
// maxDelay is the time that two timestamps are considered to be in the
// same group, e.g., the maximum delay for a simple cable delay time
double maxDelay;
// maxWaitTime is the time to wait after a signal, to know that a following
// signal has been received; this allows deciding if a group is complete
double maxWaitTime;

public:
void Init(int startChannel, double maxDelay,
std: :map<int, std::string> channelMap) {
channels.resize(channelMap.size());
this->maxDelay = maxDelay;
maxWaitTime = 10 * maxDelay;

delays.channelDelays.resize(channelMap.size());
size_ t i = O;
for (auto const &e : channelMap) {

int channel = e.first;

std: :string name = e.second;

channels[i] .index = 1i;

channels[i] .channel = channel;

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

114
115
116
117
118
119
120
121
122
123
124
125

126

92

(continued from previous page)
channels[i] .name = name;
delays.channelDelays[i] .channel = channel;
delays.channelDelays[i] .name = name;

delays.channelDelays[i] .isStart = startChannel == channel;
channelIndexes[channel] = i;
it++;

)

by

startIndex = channellIndexes|[startChannel];

void SetMaxWaitTime(double maxWaitTime) {
this->maxWaitTime = maxWaitTime;

+

// write the current timestamp in ps to the structure

void InsertTimestamp(int channel, double timestamp) {
size_t index = channelIndexes[channel];
channels[index] .timestamps.push_back(timestamp) ;

// the parameter is returned by pointer to avoid memory allocations
Delays #*MeasureDelays() {
size_t maxSize = channels[0].timestamps.size();
size_t earliestIndex = O;
double earliestTimestamp = DBL_MAX;
double latestTimestamp = O;
delays.channelDelays.resize(channels.size());

for (const ChannellInfo &ci : channels) {

maxSize = std::max(maxSize, ci.timestamps.size());

if (ci.timestamps.size() > 0 &&
ci.timestamps.front() < earliestTimestamp) {
earliestTimestamp = ci.timestamps.front();
earliestIndex = ci.index;

}

if (ci.timestamps.size() > 0 &&
ci.timestamps.back() > latestTimestamp) {
latestTimestamp = ci.timestamps.back();

+

delays.channelDelays[ci.index] .missing = false;

delays.channelDelays[ci.index] .ignoredCount = O;

+

// process the queues if enough data is expected
if (maxSize > 0 && latestTimestamp - earliestTimestamp > maxWaitTime) {
int channelsTookarly = O;
int channelsToolLate = O;
int channelsOk = O;
int channelsMissing = O;
bool startPresent = channels[startIndex].HasData();
double startTimestamp = startPresent

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

132
133
134
135
136
137
138
139
140
141
142
143

144

148
149
150
151
152
153
154
155
156
157
158
159

160

163
164
165
166
167
168
169
170
171
172
173
174
175

176

93

(continued from previous page)
? channels[startIndex] .timestamps [0]
latestTimestamp - 2 * maxDelay;

for (ChannelInfo &ci : channels) {

ci.early = false;

ci.ok = false;

if (ci.HasData()) {
double diffToStart = ci.timestamps[0] - startTimestamp;
delays.channelDelays[ci.index] .delayPs = diffToStart;
if (diffToStart < -maxDelay) {

ci.early = true;

channelsTooEarly++;

} else if (diffToStart > maxDelay) {
channelsToolLate++;
delays.channelDelays[ci.index] .missing = true;

} else {
ci.ok = true;
channelsOk++;

}

+ else {

if (latestTimestamp > startTimestamp + maxWaitTime) {
// if there was data it should have arrived by now
delays.channelDelays[ci.index] .missing = true;
channelsMissing++;

if (channelsOk + channelsToolLate + channelsMissing ==
channels.size()) {
// best case, every stop and start is included;
// otherwise some channels are missing/too late
for (ChannelInfo &ci : channels) {
if (ci.ok) {
ci.timestamps.pop_front();

+
delays.startTimestamp = startTimestamp;
delays.status = Complete;
+ else if (channelsTooEarly > O || !startPresent) {
// cut away
double cutOffTimestamp = startPresent
7 startTimestamp - maxDelay
latestTimestamp - maxWaitTime;

bool removed = false;
for (ChannellInfo &ci : channels) {
while (ci.timestamps.size() > 0 &&
ci.timestamps[0] < cutOffTimestamp) {
ci.timestamps.pop_front();

(continues on next page)

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

182
183
184
185
186
187
188
189
190
191
192
193

194

198
199
200
201
202
203
204
205
206
207
208
209
210

211

214
215
216
217
218
219
220
221
222
223
224
225

226

94

+;

(continued from previous page)

delays.channelDelays[ci.index] .ignoredCount++;
removed = true;

+

delays.startTimestamp = earliestTimestamp;

delays.status = removed 7 StartMissing : NotEnoughData;
+ else {
delays.status = NotEnoughData;
+
} else {
// else not enough data, process during next process packets
delays.status = NotEnoughData;
b

return &delays;

// the parameter is passed by reference to avoid memory allocations
void PrintDelays(Delays *delays) {
if (delays—>status == NotEnoughData) {
return;
+
if (delays—>status == Complete || delays->status == StopsMissing) {
for (const ChannelDelay &cd : delays->channelDelays) {
if (cd.isStart) {
printf("---\n’%s: Start 7%.31f ns\n", cd.name.c_str(),
delays->startTimestamp / 1000.);
+ else if (!cd.missing) {
printf("%s: Delay %.31f ns\n", cd.name.c_str(),
cd.delayPs / 1000.);
+ else {
printf("%s: Missing\n", cd.name.c_str());

ks
if (delays—>status == StartMissing) {

printf("---\n Start missing at %.31f ns\n",
delays->startTimestamp / 1000.);
for (const ChannelDelay &cd : delays->channelDelays) {
if (cd.isStart) {
// ignore
} else if (cd.ignoredCount > 0) {
printf("%s: Ignored %d\n", cd.name.c_str(),
cd.ignoredCount) ;

cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

6 Technical Data

- Input Passband: 1 MHz to 950 MHz
- Power Requirements: 35 W
- Mechanical Dimensions: 170 mm x 106 mm x 22 mm (fits in one PCle slot)

- Throughput: 5200 MByte/s on PCle x8

6.1 Digitizer Characteristics

Each board is tested against the values listed in the “Min” column. “Typical” is the mean value of the first
10 boards that were produced.

6.1.1 1-Channel-Mode (6.4 Gsps)

Symbol Parameter Min Typical Max Units
THD, Total Harmonic Distortion -67 -56 dB
SNR;, Signal-to-Noise Ratio 53 54 dB
SFDRy,1 Spurious Free Dynamic Range (including Harmonics) 58 75 dB
SFDRg, 1 Spurious Free Dynamic Range (excluding Harmonics) 71 75 dB
SINAD; Signal-to-Interference Ratio including Noise and Distortion 49 54 dB
ENOB, Effective Number of Bits 85 87

6.1.2 2-Channel-Mode (3.2 Gsps)

Symbol Parameter Min Typical Max Units
THD, Total Harmonic Distortion =70 -56 dB
SNR, Signal-to-Noise Ratio 54 54 dB
SFDR;,2 Spurious Free Dynamic Range (including Harmonics) 58 75 dB
SFDR 2> Spurious Free Dynamic Range (excluding Harmonics) 71 77 dB
SINAD, Signal-to-Interference Ratio including Noise and Distortion 49 54 dB
ENOB, Effective Number of Bits 85 87

95 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

6.1.3 4-Channel-Mode (1.6 Gsps)

Symbol Parameter Min Typical Max Units
THD, Total Harmonic Distortion -68 -56 dB
SNR,, Signal-to-Noise Ratio 53 55 dB
SFDRj 4 Spurious Free Dynamic Range (including Harmonics) 58 74 dB
SFDRy 4 Spurious Free Dynamic Range (excluding Harmonics) 71 75 dB
SINAD, Signal-to-Interference Ratio including Noise and Distortion 49 54 dB
ENOB, Effective Number of Bits 85 87

6.2 Oscillator Time Base

Symbol Parameter Min Typical Max ppb
AT Temperature stability -20 °C to 70 °C* 10 ppb
Fo Initial calibration <300 500 ppb
AF/F, Aging first year 100 ppb
AF /F,o Allinclusive aging 20 years 1000 ppb

Warm-up? 3 min.

1Over —40 °C to +85 °C; relative to stabilized frequency after 1 hour of continuous operation

2@+25 °C; within 100 ppb of F, where F is the stabilized frequency reached after 1 hour of continuous
operation

6.3 Electrical Characteristics

6.3.1 Environmental Conditions for Operation

The board is designed to be operated under the following conditions:

Symbol Parameter Min Typical Max Units
T ambient temperature 5 40 °C
RH relative humidity at 31°C non condensing 20 75 %

96 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

97

6.3.2 Environmental Conditions for Storage

The board shall be stored between operation under the following conditions:

Symbol Parameter Min Typical Max Units
T ambient temperature -30 60 °C
RH relative humidity at 31°C non condensing 10 70 %
6.3.3 Power Supply
Symbol Parameter Min Typical Max Units
Iz < PCle 3.3 V rail power consumption 0.42 W
VCCs 4 PCle 3.3 V rail power supply 3.1 3.3 3.6 \
l15 PCle 12 V rail power consumption? 31 W
VCC,, PCle 12 V rail power supply? 111 12 129 V
loux PCle 3.3 V, rail power consumption 0 W
VCC,,x PCle 3.3V, rail power supply 3.3 V

O Note

1 The 12 V power is sourced solely from the PCle power connector located at the rear of the board.

6.3.4 Analog Inputs

AC coupled single-ended analog inputs:

Symbol Parameter Min Typical Max Units
Yo Peak-to-peak input voltage 1 \%
2 Input impedance 50 Q
Ve Adjustable offset -0.5 05 V

6.3.5 Digital Inputs

AC coupled single-ended digital inputs:

cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Symbol Parameter Min Typical Max Units

YViars Peak-to-peak input voltage 1.3 V
Zy Input impedance 50 Q
lterm Termination Current -50 -20 50 mA
Vs Adjustable offset -1.3 13 VvV
thulse Pulse length 2 5 200 ns
tRise: Pulse Edge 20% to 80% 10 ns
teal: Pulse Edge 80% to 20% 10 ns

6.3.6 Absolute Maximum Ratings

The absolute ratings are the maximum amplitude that an input pulse can safely have before the board
may be damaged.

The maximum voltage of any input voltage may not exceed the values given by V,, ...

The voltages relative to a constant DC offset (i.e,, the pulse “height”) may not exceed the values given by

VAC,max-

Analog Inputs
Symbol Parameter Min Typical Max Units
V ax Maximum input voltage -25 25 V
Vacmax ~ Maximum pulse height relative to DC offset -1.9 20 V

Digital Inputs
Symbol Parameter Min Typical Max Units
V max Maximum input voltage -16 le V
Vacmax ~ Maximum pulse height relative to DC offset -5 S Vv

6.4 Information Required by DIN EN 61010-1

6.4.1 Manufacturer
The Ndigo6G is a product of:
cronologic GmbH & Co. KG

JahnstraBe 49

98 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

929

60318 Frankfurt

HRA 42869 beim Amtsgericht Frankfurt/M
VAT-ID: DE235184378

6.4.2 Intended Use and System Integration

The devices are not ready to use as delivered by cronologic. It requires the development of specialized
software to fulfill the application of the end user. The device is provided to system integrators to be built
into measurement systems that are distributed to end users. These systems usually consist of a Ndigo6G,
a main board, a case, application software and possible additional electronics to attach the system to
some type of detector. They might also be integrated with the detector.

The Ndigo6G is designed to comply with DIN EN 61326-1 when operated on a PCle compliant main
board housed in a properly shielded enclosure. When operated in a closed standard compliant PC
enclosure the device does not pose any hazards as defined by EN 61010-1.

Radiated emissions, noise immunity and safety highly depend on the quality of the enclosure. It is the
responsibility of the system integrator to ensure that the assembled system is compliant to applica-
ble standards of the country that the system is operated in, especially with regard to user safety and
electromagnetic interference. Compliance was only tested for attached cables shorter than 3 m.

When handling the board, adequate measures have to be taken to protect the circuits against elec-
trostatic discharge (ESD). All power supplied to the system must be turned off before installing the
board.

6.4.3 Environmental Conditions

See Section 6.3.1 and Section 6.3.3.

6.4.4 Inputs

All inputs are AC coupled. The inputs have very high input bandwidth requirements and therefore there
are no circuits that provide overvoltage protection for these signals.

“* Danger

Applying high voltage on the inputs relative to the slot cover can result in permanent damage to the
board. See Section 6.3.6 for the maximum ratings of the inputs.

6.4.5 Recycling

cronologic is registered with the “Stiftung Elektro-Altgerate Register” as a manufacturer of electronic
systems with Registration ID DE 77895909.

The Ndigo6G-12 belongs to category 9, “Uberwachungs und Kontrollinstrumente fir ausschlieBlich
gewerbliche Nutzung”. The last owner of an Ndigo6G-12 must recycle it, treat the board in compliance
with §11 and §12 of the German ElektroG, or return it to the manufacturer’'s address listed in Section
6.4.1.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

100

6.4.6 Export Control

The Ndigo6G product line is a dual-use item under Council Regulation (EC) No 428/2009 of 5 May 2009
in section 3A002h. Similar regulations exist in many countries outside Europe.

Regardless of the fact that we at cronologic exclude the use of our products for military purposes, the
laws of the EU and many other countries restrict exports of dual-use items. Since we have to apply for
a General Export Permit for these countries, delivery processes may be delayed or delivery to certain
countries may become impossible.

For the application of this export license we need the following documents from you:
- Exporter declaration
- Company profile
- Import license (country dependent)

There are countries for which a General Export License can be used for the export of dual-use goods. In
this case we need the corresponding documents from you and there will be no further delay. Included
countries are:

- Australia

- Japan

- Canada

- Liechtenstein
- New Zealand
- Norway

- Switzerland

- Singapore

- USA

Before re-exporting an Ndigo6G or any product containing an Ndigo6G as a component, please check
you local regulations whether an export permit is required.

It is not permitted to export an Ndigo6G to the Russian Federation or the Republic of Belarus.

cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://eur-lex.europa.eu/eli/reg/2009/428/oj
https://www.cronologic.de/faq/export-license
https://www.cronologic.de

7 Revision History

7.1 Firmware

1.25086 — 2025-04-03
Bugfix: Removed trigger dead time
1.24120 — 2024-04-30

Improved ADC/TDC synchronization

Added sample averaging modes AA/DD, AAAA/DDDD, and AADD
TiGer Updates

Internal optimizations

Bug fixes
5493 — 2023-10-30

Fixed bug related to level triggering
Fixed first packet being empty
Minor bug fixes

5467 — 2023-05-05

PCle optimizations

Minor bug fixes

7.2 Driver

2.2.0 — 2025-04-03

Bugfix: Removed trigger dead time
Bugfix: Fixed NDIGO6G12 MAX PRECURSOR for Averaging Mode

2.0.1 —2024-07-17

Extensive revision of the application programming interface
Improved linux support
Improved documentation

Improved TDC and ADC synchronization
1.5.4 — 2024-07-13

Fixed 2 channel handling with trigger from opposite channel (trigger A on channel D)

Fixed timestamp uncertainty in lower bits
1.5.3 — 2024-07-07

Dynamic reconfiguration with .cronorom support
1.4.5 —2023-01-23

Crono kernel driver update tov1.4.2

101 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

Added support for revision 3 boards
Minor bug fixes
Support for 32-bit OS discontinued

1.4.0 — 2022-08-18
Added support for external 10 MHz reference on slot bracket
1.3.0 — 2022-05-25

Added support for Averager

7.3 User Guide

1.4.0 — 2025-06-12

Updated documentation of ndigo6gl2 configuration: :output_mode
Updated ndigo6gl2 param_info::adc_sample_delay docstring
Documented possible baseline drift due to the AC coupling

Updated various figures to also work in dark mode

Improved Averager documentation

Revised documentation of crono_packet
1.3.0 — 2025-04-10

Documented firmware update procedure

Documented TDC calibration procedure
1.2.0 — 2025-04-02

Documented minimal packet length
Moved alert and device-state defines to corresponding documentation section
Updated Erratum

1.1.0 — 2025-01-14
Added Section 6.3.6
1.0.1 — 2024-10-22
Improved Figure 1.1
1.0.0 — 2024-10-17

Added digitizer characteristics
Added chapter on TiGer
Added Erratum

Fixed gating documentation
Many corrections

0.2.1 — 2024-10-01
Corrections in Export Control
0.2.0 — 2024-10-01

Added gating examples
Updated Export Control

102 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

103

0.1.4 — 2024-08-06
Added figures for the Trigger Matrix and Gating Blocks.
0.1.3 — 2024-08-01

Added documentation for clock connections

Added link to current user guide example code
Removed clutter from the APIs “ON THIS PAGE" sidebar
Updated C++ example

General improvements
0.1.2 — 2024-07-17

Renamed FPGAO/1 to TRG/GATE
Restructured API documentation

Expanded documentation on Packet Format
0.1.1 — 2024-07-16

Corrected values in introduction

Improved phrasing throughout
0.1.0 — 2024-07-11

Initial release

cronologic GmbH & Co. KG

Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

8 Erratum

Up to firmware revision 1.24120, the retrigger feature of the gating blocks does not behave as intended.
Instead of a gate being only extended by a retrigger event, the state of the gate is reset to inactive.

Up to firmware revision 1.24120 and in 4-channel mode, ndigo6g12 single shot () only works
properly if ndigo6gl2 trigger block::multi_shot_count ==

Up to firmware revision 1.24120, a deadtime of up to 10 ns after a packet can occur.

104 cronologic GmbH & Co. KG Ndigo6G-12 User Guide, Rev. 1.4.0

https://www.cronologic.de

	Introduction
	Features
	Board overview

	Hardware
	Installation
	Cooling
	External Inputs and Connectors
	Front bracket inputs
	Clock connections
	Analog Inputs
	Analog Offsets
	AC-Coupling and Baseline Drift

	Digital TDC Inputs
	Digital Control Inputs
	Use Control Inputs as TDCs

	Functionality
	ADC Modes
	1-Channel Modes A and D
	2-Channel Mode AD
	4-Channel Mode ABCD
	Multiple Sampling Modes
	Modes AA and DD
	Mode AADD
	Modes AAAA, DDDD

	Zero Suppression
	Trigger Setup
	Trigger configuration
	Analog Inputs
	Digital Inputs

	Trigger inputs
	Gating trigger events

	Gating Blocks
	Examples
	Example 1: Suppression of Noise After Starting an Acquisition

	Example 2: Delayed Trigger

	Auto Triggering Function Generator
	Averaging Mode
	Timing Generator (TiGer)
	Performing a firmware update
	Procedure

	Calibrating the TDC
	Re-calibrating the Ndigo6G-12

	Driver Programming API
	Constants
	General
	Trigger and Gating Block Sources
	Function return values
	PCIe Information

	Initialization
	ndigo6g12_get_default_init_parameters
	ndigo6g12_init
	ndigo6g12_close
	ndigo6g12_device
	ndigo6g12_init_parameters

	Status information
	ndigo6g12_get_driver_revision
	ndigo6g12_get_driver_revision_str
	ndigo6g12_count_devices
	ndigo6g12_get_static_info
	ndigo6g12_get_param_info
	ndigo6g12_get_fast_info
	ndigo6g12_get_pcie_info
	ndigo6g12_param_info
	ndigo6g12_static_info
	ndigo6g12_fast_info
	ndigo6g12_pcie_info

	Configuration
	ndigo6g12_get_default_configuration
	ndigo6g12_configure
	ndigo6g12_configuration
	ndigo6g12_trigger
	ndigo6g12_trigger_block
	ndigo6g12_gating_block
	ndigo6g12_tdc_configuration
	ndigo6g12_averager_configuration
	ndigo6g12_tdc_channel
	ndigo6g12_tdc_gating_block
	ndigo6g12_tdc_tiger_block

	Runtime control
	ndigo6g12_start_capture
	ndigo6g12_stop_capture
	ndigo6g12_manual_trigger
	ndigo6g12_single_shot
	ndigo6g12_clear_pcie_errors

	Readout
	ndigo6g12_read
	ndigo6g12_get_last_error_message
	ndigo6g12_device_state_to_str
	ndigo6g12_read_in
	ndigo6g12_read_out

	Packet Format
	Output Structure crono_packet
	Utility macros
	Data encoding for ADC hits
	NDIGO6G12_OUTPUT_MODE_SIGNED16
	NDIGO6G12_OUTPUT_MODE_RAW
	NDIGO6G12_OUTPUT_MODE_RAW_NO_CB
	NDIGO6G12_OUTPUT_MODE_SIGNED32

	Data encoding for TDC hits
	Data encoding for averaged ADC hits

	C++-Example
	ndigo6g12_example.cpp
	ndigo6g12_app.h
	ndigo6g12_adc_single.cpp
	ndigo6g12_adc_dual.cpp
	ndigo6g12_adc_quad.cpp
	ndigo6g12_adc_averager.cpp
	ndigo6g12_tdc.cpp
	delay.h

	Technical Data
	Digitizer Characteristics
	1-Channel-Mode (6.4 Gsps)
	2-Channel-Mode (3.2 Gsps)
	4-Channel-Mode (1.6 Gsps)

	Oscillator Time Base
	Electrical Characteristics
	Environmental Conditions for Operation
	Environmental Conditions for Storage
	Power Supply
	Analog Inputs
	Digital Inputs
	Absolute Maximum Ratings
	Analog Inputs
	Digital Inputs

	Information Required by DIN EN 61010-1
	Manufacturer
	Intended Use and System Integration
	Environmental Conditions
	Inputs
	Recycling
	Export Control

	Revision History
	Firmware
	Driver
	User Guide

	Erratum

